Рисунок 2
Рисунок 2 описывает качественный вид локализованных температурных профилей остановившейся на время тепловой волны в различные моменты времени интервала [0,T). рост температуры в области тепловых возмущений при
4. Задача нелинейной теплопроводности с объемным поглощением
Рассмотрим еще одну задачу нелинейной теплопроводности, имеющую точное решение в аналитической форме. Пусть в нелинейной среде происходят эндотермические процессы, удельная мощность которых зависит от температуры степенным образом. Нестационарный процесс теплопроводности в такой среде с объемным поглощением теплоты описывается квазилинейным уравнением
Здесь u(М, t) - температура; р = const > 0 - параметр поглощения, а значение N = 1, 2, 3 определяет размерность пространства, в котором происходит исследуемый процесс.
Запишем модель задачи о влиянии мгновенного сосредоточенного теплового источника в среде с поглощением, если δ< 1, а показатель степени
где радиальная пространственная координата r≥0 для случаев N = 2 и N = З и
С учетом конечной скорости распространения тепловых возмущений в нелинейной среде будем искать решение задачи (4.2) в виде фронтового решения
где A(t) и l(t) - функции, подлежащие определению.
Подставив предполагаемую форму решения (4.3) в уравнение (4.2), получим
Можно заметить, что это соотношение приводится к виду
если предположить, что
т.е.
Тогда
Так как условие (4.5) должно выполняться для любых r и t, то это возможно лишь при S(t) = 0. С учетом формулы (4.7) это условие приводит к дифференциальному уравнению для определения функции А(t):
Для обеспечения слабой сходимости решения в форме (4.3) при
неограниченно возрастающее при
Теперь, используя соотношение (4.6), для функции l(t) приходим к следующему дифференциальному уравнению:
Общее решение этого неоднородного дифференциального уравнения первого порядка находим как сумму общего решения однородного уравнения и частного решения неоднородного уравнения. В результате получаем
Таким образом, с учетом уравнений (4.3), (4.9) и (4.11) решение исходной задачи (4.2) можно записать в форме фронтового решения
где
Значение константы С в формуле (4.14) можно найти из соотношения
являющегося следствием начального условия задачи Коши (4.2). С учетом выражений (4.12) - (4.14) соотношение (4.15) преобразуется к виду
Учитывая, что
а значение интеграла
выражается через бета функцию
из выражения (4.16) находим значение константы
Таким образом, точное решение задачи (4.2) имеет вид (4.12), где u(t) и r+(t) определены соотношениями (4.13) и (4.14) с константой С, которая находится по формуле (4.17). Найденное решение допускает предельный переход р
Дадим физическую интерпретацию решения (4.12). Оно описывает эволюцию тепловой структуры конечных пространственных размеров, которую мы будем называть тепловым импульсом. В любой момент времени t > 0 существует фронт теплового импульса r = r+(t), отделяющий область тепловых возмущений от невозмущенной области, куда тепловые возмущения еще не дошли и где u = 0.
Проанализируем характер движения фронта теплового импульса. Для этого запишем уравнение (4.14) в виде
Где
Качественный вид зависимости (4.18) представлен на рисунке.
Рисунок 3 описывает качественный вид зависимости движения фронта теплового импульса
На начальной стадии эволюции теплового импульса механизм тепловой диффузии является определяющим и пространственный размер теплового импульса увеличивается с течением времени. В среде распространяется волна разогрева. Затем скорость движения фронта теплового импульса уменьшается, и при t = t*, где
фронт останавливается, проникнув в нелинейную среду с объемным поглощением лишь на конечную глубину.
При t > t* объемное поглощение тепловой энергии становится доминирующим фактором в балансе энергии, и волна разогрева сменяется волной охлаждения, когда ширина теплового импульса уменьшается. Фронт теплового импульса изменяет направление движения, и в момент времени t = tm тепловой импульс стягивается в точку, прекращая свое существование. Тепловой импульс в среде с объемным поглощением тепловой энергии существует конечное время, т.е. для t > tm в любой точке пространства u = 0. Такую локализацию тепловых возмущений с конечным временем их существования в нелинейной среде с поглощением естественно назвать пространственно-временной локализацией.