Смекни!
smekni.com

Теория нелинейной теплопроводности (стр. 3 из 5)

Рисунок 2

Рисунок 2 описывает качественный вид локализованных температурных профилей остановившейся на время тепловой волны в различные моменты времени интервала [0,T). рост температуры в области тепловых возмущений при

. В течение промежутка времени [0,T) тепловые возмущения от нагретой стенки локализованы в пространственной области
конечных размеров.

Решение (3.12) можно назвать остановившейся на конечное время тепловой волной. Качественный вид локализованных температурных профилей такой тепловой структуры в различные моменты времени интервала [0, Т) для среды с показателем нелинейности δ= 2 представлен на рисунке 2.

4. Задача нелинейной теплопроводности с объемным поглощением

Рассмотрим еще одну задачу нелинейной теплопроводности, имеющую точное решение в аналитической форме. Пусть в нелинейной среде происходят эндотермические процессы, удельная мощность которых зависит от температуры степенным образом. Нестационарный процесс теплопроводности в такой среде с объемным поглощением теплоты описывается квазилинейным уравнением


(4.1)

Здесь u(М, t) - температура; р = const > 0 - параметр поглощения, а значение N = 1, 2, 3 определяет размерность пространства, в котором происходит исследуемый процесс.

Запишем модель задачи о влиянии мгновенного сосредоточенного теплового источника в среде с поглощением, если δ< 1, а показатель степени

. Учитывая симметрию такой задачи (плоскую для N = 1, осевую для N = 2 и центральную для N = 3), сформулируем соответствующую задачу Коши для квазилинейного уравнения теплопроводности:

(4.2)

где радиальная пространственная координата r≥0 для случаев N = 2 и N = З и

для N = 1. Параметр а2 в уравнении мы положили равным единице, что всегда можно сделать соответствующим выбором масштабов времени или пространственного переменного.

С учетом конечной скорости распространения тепловых возмущений в нелинейной среде будем искать решение задачи (4.2) в виде фронтового решения

(4.3)

где A(t) и l(t) - функции, подлежащие определению.

Подставив предполагаемую форму решения (4.3) в уравнение (4.2), получим


(4.4)

Можно заметить, что это соотношение приводится к виду

(4.5)

если предположить, что

т.е.

(4.6)

Тогда

(4.7)

Так как условие (4.5) должно выполняться для любых r и t, то это возможно лишь при S(t) = 0. С учетом формулы (4.7) это условие приводит к дифференциальному уравнению для определения функции А(t):

(4.8)

Для обеспечения слабой сходимости решения в форме (4.3) при

к дельтаобразному начальному распределению необходимо, чтобы
, а
при
. Разделяя переменные в уравнении (4.8), интегрируя и полагая константу интегрирования равной нулю, находим решение.

(4.9)

неограниченно возрастающее при

.

Теперь, используя соотношение (4.6), для функции l(t) приходим к следующему дифференциальному уравнению:

(4.10)

Общее решение этого неоднородного дифференциального уравнения первого порядка находим как сумму общего решения однородного уравнения и частного решения неоднородного уравнения. В результате получаем

(4.11)

Таким образом, с учетом уравнений (4.3), (4.9) и (4.11) решение исходной задачи (4.2) можно записать в форме фронтового решения

(4.12)

где

(4.13)

(4.14)

Значение константы С в формуле (4.14) можно найти из соотношения

(4.15)

являющегося следствием начального условия задачи Коши (4.2). С учетом выражений (4.12) - (4.14) соотношение (4.15) преобразуется к виду

(4.16)

Учитывая, что

а значение интеграла

выражается через бета функцию

из выражения (4.16) находим значение константы

(4.17)

Таким образом, точное решение задачи (4.2) имеет вид (4.12), где u(t) и r+(t) определены соотношениями (4.13) и (4.14) с константой С, которая находится по формуле (4.17). Найденное решение допускает предельный переход р

0. Полагая в уравнении (4.14) р = 0, получаем решение задачи о влиянии мгновенного сосредоточенного теплового источника в нелинейной среде без объемного поглощения. Для N = 1 это решение было построено нами ранее.

Дадим физическую интерпретацию решения (4.12). Оно описывает эволюцию тепловой структуры конечных пространственных размеров, которую мы будем называть тепловым импульсом. В любой момент времени t > 0 существует фронт теплового импульса r = r+(t), отделяющий область тепловых возмущений от невозмущенной области, куда тепловые возмущения еще не дошли и где u = 0.

Проанализируем характер движения фронта теплового импульса. Для этого запишем уравнение (4.14) в виде

(4.18)

Где

Качественный вид зависимости (4.18) представлен на рисунке.


Рисунок 3 описывает качественный вид зависимости движения фронта теплового импульса

На начальной стадии эволюции теплового импульса механизм тепловой диффузии является определяющим и пространственный размер теплового импульса увеличивается с течением времени. В среде распространяется волна разогрева. Затем скорость движения фронта теплового импульса уменьшается, и при t = t*, где

фронт останавливается, проникнув в нелинейную среду с объемным поглощением лишь на конечную глубину.

При t > t* объемное поглощение тепловой энергии становится доминирующим фактором в балансе энергии, и волна разогрева сменяется волной охлаждения, когда ширина теплового импульса уменьшается. Фронт теплового импульса изменяет направление движения, и в момент времени t = tm тепловой импульс стягивается в точку, прекращая свое существование. Тепловой импульс в среде с объемным поглощением тепловой энергии существует конечное время, т.е. для t > tm в любой точке пространства u = 0. Такую локализацию тепловых возмущений с конечным временем их существования в нелинейной среде с поглощением естественно назвать пространственно-временной локализацией.