удовлетворяющее однородным граничным условиям
и начальным условиям
Уравнение (1) линейно и однородно, поэтому сумма частных решений также является решением этого уравнения. Имея достаточно большое число частных решений, можно попытаться при помощи суммирования их с некоторыми коэффициентами найти искомое решение.
Поставим основную вспомогательную задачу: найти решение уравнения
не равное тождественно нулю, удовлетворяющее однородным граничным условиям
и представимое в виде произведения
где X (x) – функция только переменного x, T (t) – функция только переменного t.
Подставляя предполагаемую форму решения (12) в уравнение (1), получим:
или, после деления на XT,
Чтобы функция (12) была решением уравнения (1), равенство (13) должно удовлетворяться тождественно, т. е. 0 ‹ х ‹
где
Из соотношения (14) получаем обыкновенные дифференциальные уравнения для определения функций X (x) и T (t)
Граничные условия (11) дают:
Отсюда следует, что функция X (x) должна удовлетворять дополнительным условиям:
X(0) = X(
Так как иначе мы имели бы
в то время как задача состоит в нахождении нетривиального решения. Для функции T (t) в основной вспомогательной задаче никаких дополнительных условий нет.
Таким образом, в связи с нахождением функции X (x) мы приходим к простейшей задаче о собственных значениях: найти те значения параметра
а также найти эти решения. Такие значения параметра
Рассмотрим отдельно случаи, когда параметр
1. При
Граничные условия дают:
Х (0) = С1 + С2 = 0;
т. е.
Но в рассматриваемом случае
С1 =0, С2 = 0
и, следовательно,
Х (х)
2. При
Х (х) = С1х + С2.
Граничные условия дают:
т. е. С1 = 0 и С2 = 0 и, следовательно,
Х (х)
3. При
Граничные условия дают:
Если Х(х) не равно тождественно нулю, то D2
Или
где n- любое целое число. Следовательно, нетривиальные решения задачи (18) возможны лишь при значениях
Этим собственным значениям соответствуют собственные функции
где Dn – произвольная постоянная.
Итак, только при значениях
существуют нетривиальные решения задачи (11)
определяемые с точностью до произвольного множителя, который мы положили равным единице. Этим же значениям
где An и Bn – произвольные постоянные.
Возвращаясь к задаче (1), (9), (10), заключаем, что функции
являются частными решениями уравнения (1), удовлетворяющими граничным условиям (11) и представимыми в виде произведения (12) двух функций, одна из которых зависит только от х, другая – от t. Эти решения могут удовлетворить начальным условиям (10) нашей исходной задачи только для частных случаев начальных функций j(x) и y(x).
Обратимся к решению задачи (1), (9), (10) в общем случае. В силу линейности и однородности уравнения (1) сумма частных решений
также удовлетворяет этому уравнению и граничным условиям (9). Начальные условия позволяют определить An и Bn. Потребуем, чтобы функция (24) удовлетворяла условиям (10)
Из теории рядов Фурье известно, что произвольная кусочно-непрерывная и кусочно-дифференцируемая функция f(x), заданная в промежутке
где
Если функции j(x) и y(x) удовлетворяют условиям разложения в ряд Фурье, то
Сравнение этих рядов с формулами (25) показывает, что для выполнения начальных условий надо положить
чем полностью определяется функция (24), дающая решение исследуемой задачи.
Итак, мы доказали, что ряд (24), где коэффициенты An и Bn определены по формуле (30), если он допускает двукратное почленное дифференцирование, представляет функцию u (x, t), которая является решением уравнения (1) и удовлетворяет граничным и начальным условиям (9) и (10).
Замечание. Решая рассмотренную задачу для волнового уравнения другим методом, можно доказать, что ряд (24) представляет решение и в том случае, когда он не допускает почленного дифференцирования. При этом функция
1. Найти решение уравнения: