Смекни!
smekni.com

Методи вимірювання температури полум'я (стр. 2 из 4)

або

(2)

Але випромінювання спектральної лінії носить термічний характер. Тому на підставі закону Кірхгофа

де

- спектральна яскравість абсолютно чорного тіла при тій же довжині хвилі і тій же температурі. Тому замість (2) отримаємо

(3)

Але Т1 – яскравісна температура джерела. Тому для умови обернення спектральної лінії дійсна температура полум’я повинна бути рівна яскравісній температурі джерела S. Той факт, що в кінцевому виразі (3) не фігурує коефіцієнт поглинання полум’я

, різний для різних ділянок спектральної лінії, означає справедливість цього виразу для всієї лінії. Незалежність характеру зникнення спектральної лінії від коефіцієнта поглинання дозволяє прийти до висновку про застосовність методу обернення для вимірювання температур полум’я, що містять довільну кількість збуджених атомів речовини, спектральні лінії якого використовуються для вимірювання. Однак при дуже малій концентрації в полум’ї збуджених атомів інтенсивність спектральної лінії стає настільки малою, а похибки візуального або фотоелектричного рівняння яскравості лінії і фону настільки великими, що вони можуть привести до великих похибок визначення температури полум’я.

Цей метод використовується не тільки для вимірювання середньої температури полум’я в даному його перетині, але іноді і для дослідження поля температур. У цьому випадку вибираються спектральні лінії такого лужного металу, який або зовсім відсутній, або перебуває в дуже невеликій кількості в пальному. Розчин солей такого лужного металу послідовно вводять в окремі місця полум’я, здійснюючи тим самим «фарбування» і спостерігаючи кожного разу обернення вибраних спектральних ліній. Очевидно, що введення «барвника» в окремі зони факела в тій чи іншій мірі порушує його температурне поле.

Інтенсивність спектральних ліній лужних металів визначається енергією поступального руху атомів. Тому результати вимірювання температур полум’я у нерівноважному стані з використанням методу обернення можуть відрізнятися від результатів вимірювань, отриманих із застосуванням інших оптичних методів, що використовують енергію коливального або обертального руху атомів і молекул. Для перевірки можливого впливу хемілюмінесцентного випромінювання слід вимірювати температуру полум’я по декількох спектральних лініях одного і того ж металу або по спектральних лініях різних металів. Близькість результатів вимірювань будуть вказувати на незначний вплив хемілюмінесцентного випромінювання, інтенсивність якого сильно змінюється по спектру. Точність вимірювання температур методом обернення визначається як характером даного полум’я, так і інструментальними похибками застосовуваної вимірювальної апаратури, її динамічними характеристиками. Похибка результату вимірювання температур полум’я методом обернення в найкращих умовах оцінюється в ± 10 К без урахування похибки градуювання використаного джерела випромінювання. Застосування автоматичних вимірювальних пристроїв підвищує величину цієї похибки.

3.2 Метод випромінювання і поглинання

Метод випромінювання і поглинання застосовується зазвичай для вимірювання температур полум’я, що світяться, з такою концентрацією завислих у полум’ї твердих частинок, яка дає коефіцієнт чорноти випромінювання всього полум’я не менше 0,2. Принципова схема установки, призначеної для вимірювання температури полум’я за методом випромінювання та поглинання, представлена на рис. 2.

Випромінювання джерела 1 (температурної лампи) розділяється на два канали. В одному каналі промінь від джерела пронизує полум’я 2, а в другому обходить полум’я. В обох каналах випромінювання модулюється за допомогою двох дисків 7 і 5 з секторними вирізами. При цьому частота модуляції диском 7 в кілька разів більше, ніж диском 5. Після проходження однакових світлофільтрів 3 і 6 промені знову сходяться на катоді фотоелемента 4. Діафрагма 8 служить для зміни величини сигналу джерела 1 з яскравісної температурою Tнс. Таким чином, у кожному циклі вимірювань фотоелемент фіксує по черзі три інтенсивності:

- випромінювання джерела,
- випромінювання полум’я,
- випромінювання джерела пройшовшого через полум’я. Можна показати, що

(4)

Рис. 2. Установка для вимірювання температури полум’я методом випромінювання і поглинання

1 – джерело порівняння; 2 – полум’я; 3, 6 – світлофільтри;

4 – фотоелемент; 5. 7 – диски з секторними вирізами; 8 – діафрагма

При використанні фотоелектричної вимірювальної системи з лінійною характеристикою ліва частина цієї рівності виходить безпосередньо як різниця відношень ординат відповідних сигналів. Тому, знаючи яскравістну температуру джерела

і ефективну довжину хвилі
пропускання світлофільтрів з даними фотоелементом, за допомогою формули (4) легко визначити температуру полум’я
.

Вимірювання стаціонарних температур полум’я з використанням методу випромінювання і поглинання може бути здійснено більш простими вимірювальними засобами, наприклад звичайним оптичним пірометром з зникаючою ниткою. У цьому випадку пірометри по черзі вимірюють три _имірювання температури: джерела (температурної лампи), полум’я і джерела, пронизуючого полум’я. Розрахунок температури полум’я здійснюється за формулою (4), в ліву частину якої підставляється значення яскравості чорного тіла, що відповідають трьом вимірюваним значенням температур. Точність вимірювання стаціонарних температур полум’я методом випромінювання та поглинання, крім інструментальних похибок застосовуваної апаратури, визначається також ступенем однорідності температурного поля полум’я.

3.3 Метод абсолютної інтенсивності спектральної лінії

Цей метод ґрунтується залежностю інтенсивності насиченого центру резонансної спектральної лінії від температури полум’я. Для цієї мети зазвичай використовуються спектральні лінії будь-якого лужного металу з досить низьким потенціалом іонізації. При малій концентрації лужного металу в пальному інтенсивність резонансної лінії залежить не тільки від температури полум’я, але й від ступеня концентрації. Контур лінії для цього випадку представлений кривою 1 на рис. 3. У міру збільшення концентрації інтенсивність лінії зростає, збільшується ордината центру лінії. Зростання ординати центру лінії відбувається до тих пір, поки не наступить свого роду «насичення» (криві 2 і 3 рис. 3), при якому подальше збільшення концентрації лужного металу не викликає більшого зростання центральної частини лінії.

Така властивість емісійних ліній спектру призводить до того, що при достатній концентрації випромінюючого елемента інтенсивність насиченого центру спектральної лінії стає однозначною функцією тільки температури полум’я з монохроматичним коефіцієнтом чорноти випромінювання рівним 1. Отже, насичена частина лінії випромінює як абсолютне чорне тіло, і вимірявши інтенсивність центру насиченої лінії, можна визначити справжню температуру полум’я за законами випромінювання абсолютно чорного тіла.

Рис. 3. Залежність контуру резонансної лінії від концентрації лужного металу в пальному:

1 – при малій концентрації лужного металу;

2, 3-при концентраціях, достатніх для «насичення»

Метод абсолютної інтенсивності спектральних ліній практично не має верхньої межі вимірюваних температур. При дуже високих температурах застосовність методу обмежується областю, в якій має місце іонізація основної маси атомів випромінюючого металу.

Застосування випромінюючого елемента з більш високим потенціалом іонізації дозволяє збільшити область _имірювання. Метод абсолютної інтенсивності застосовується для вимірювання температур полум’я, що не світиться, так і для полум’я, що світиться. Його інструментальна похибка складає близько 1% вимірюваної температури при використанні спектральної апаратури з дифракційними гратками. При дослідженні цим методом полум’я з неоднорідним температурним полем виникають додаткові похибки.

вимірювання температура полум’я спектральний


3.4 Метод відносних інтенсивностей спектральних ліній

Цей метод дозволяє здійснити визначення температур полум'я за результатами вимірювання відношень інтегральних інтенсивностей двох спектральних ліній, що належать одному і тому ж випромінюючому елементу. Як випливає з квантової теорії випромінювання, відношення інтенсивностей

і
двох спектральних ліній, відповідних довжин хвиль
і
, визначається виразом