где
Для определения напряжения в кольце необходимо определить рациональное напряжение на головных участках. Для этого определяются потоки максимальной активной мощности на головных участках, при этом используется допущение об отсутствии потерь мощности на участках. В общем виде:
где Pi- максимальная прогнозируемая мощность нагрузки i-го узла;
li0` , li0``-длины линий от i-й точки сети до соответствующего конца (0` или 0``) развернутой схемы замещения кольцевой сети при ее разрезании в точке источника питания;
l0`-0``- суммарная длина всех участков кольцевой сети. /4, с 110/
Таким образом, получаем напряжения для интересующих нас участках схем, расчёт которых отражён в приложении Б. Для всех рассматриваемых участков расчётное рациональное напряжение равно 110 кВ.
Сравнение вариантов приводится в таблице 3.1
Таблица 3.1 – Параметры вариантов сети
№ варианта | Суммарная длинна ВЛ, км | Количество выключателей ВН (110 кВ) |
1 | 161.065 | 16 |
2 | 163.426 | 17 |
3 | 192.556 | 18 |
4 | 183.294 | 17 |
По итогам предварительного сравнения выбираем для дальнейшего рассмотрения варианты 1 и 2.
3.2 Детальный анализ конкурентно способных вариантов
В данном подпункте необходимо оценить количество оборудования, которое необходимо для надёжного и качественного электроснабжения потребителей: трансформаторы, сечения ЛЭП, мощность компенсирующих устройств, схемы распределительных устройств. Кроме того на данном этапе оценивается техническая возможность (целесообразность) реализации предложенных вариантов.
Выбор количества и мощности компенсирующих устройств
Компенсация реактивной мощности - целенаправленное воздействие на баланс реактивной мощности в узле электроэнергетической системы с целью регулирования напряжения, а в распределительных сетях и с целью снижения потерь электроэнергии. Осуществляется с использованием компенсирующих устройств. Для поддержания требуемых уровней напряжения в узлах электрической сети потребление реактивной мощности должно обеспечиваться требуемой генерируемой мощностью с учетом необходимого резерва. Генерируемая реактивная мощность складывается из реактивной мощности, вырабатываемой генераторами электростанций и реактивной мощности компенсирующих устройств, размещенных в электрической сети и в электроустановках потребителей электрической энергии.
Мероприятия по компенсации реактивной мощности на ПС позволяют:
· уменьшить нагрузку на трансформаторы, увеличить срок их службы;
· уменьшить нагрузку на провода, кабели, использовать их меньшего сечения;
· улучшить качество электроэнергии у электроприемников;
· уменьшить нагрузку на коммутационную аппаратуру за счет снижения токов в цепях;
· снизить расходы на электроэнергию.
Для каждой отдельно взятой ПС предварительная величина мощности КУ определяется по формуле:
Далее производится подбор количества КУ по секциям шин для равномерной компенсации реактивной мощности и определение фактической величины КРМ.
Определение величины некомпенсированной мощности, которая будет протекать через трансформаторы определяется по выражению:
Тип и количество принятых КУ сведено в таблицу 3.2. Подробный расчёт приводится в приложении Б.
Так как это курсовой проект, то типы конденсаторных установок приняты аналогичные (с разъеденителем во вводной ячейке - 56 и левым расположением вводной ячейки - УКЛ)
Таблица 3.2 – Типы применённых КУ на ПС проектируемой сети.
ПС (№ узла ВН) | Тип КУ | Количество, шт | Общая мощность, МВАр |
А (1) | УКЛ56 450/10,5 | 8 | 3,6 |
Б (2) | УКЛ56 1350/10,5 | 2 | 2,7 |
В (3) | УКЛ56 900 /10,5УКЛ 56 600/10,5 | 62 | 6,6 |
Г (4) | УКЛ56 450/10,5 | 6 | 2,7 |
Выбор проводов по экономическим токовым интервалам.
Суммарное сечение проводников ВЛ принимается по табл. 43.4, 43.5 /6, с.241-242/ в зависимости от расчетного тока
Расчетными для выбора экономического сечения проводов являются: для линий основной сети – расчетные длительные потоки мощности; для линий распределительной сети – совмещенный максимум нагрузки подстанций, присоединенных к данной линии, при прохождении максимума энергосистемы.
При определении расчетного тока не следует учитывать увеличения тока при авариях или ремонтах в каких-либо элементах сети. Значение
где
Введение коэффициента учитывает фактор разновременности затрат в технико-экономических расчетах. Для ВЛ 110—220 кВ принимается
Значение Км принимается равным отношению нагрузки линии в час максимума нагрузки энергосистемы к собственному максимуму нагрузки линии. Усредненные значения коэффициента αТ принимаются по данным табл. 43.6. /6, с. 243/.
Для определения тока на 5 год эксплуатации мы изначально при проектировании спрогнозировали нагрузки в разделе 3. Таким образом, мы уже оперируем прогнозируемыми нагрузками. Тогда для нахождения тока на пятом году эксплуатации нам необходимо
где
Для Хабаровского края принимается III район по гололёду.
Для двух вариантов сети расчётные сечения на всех участках приведены в таблице 3.3. По длительно допустимым токам производится проверка по условию нагрева проводов. То есть, если ток в линии в послеаварийном режиме меньше, чем длительно допустимый, то данное сечение провода можно выбрать для данной линии.
Таблица 3.3 – Сечения проводов в варианте 1
Ветви | Расчётный ток, А | Марка выбранного провода | Количество цепей | Марка опор |
1 | 2 | 3 | 4 | 5 |
5-4 | 226,5 | АС-240/32 | 1 | ПБ 110-3 |
6-4 | 160,1 | АС-240/32 | 1 | ПБ 110-3 |
5-1 | 290,6 | АС-300/39 | 1 | ПБ 220-1 |
5-3 | 337 | АС-300/39 | 2 | ПБ 220-1 |
1-2 | 110,8 | АС-150/24 | 1 | ПБ 110-3 |
2-3 | 92,8 | АС-120/19 | 1 | ПБ 110-8 |
Таблица 3.2 – Сечения проводов в варианте 2
Ветви | Расчётный ток, А | Марка выбранного провода | Количество цепей | Марка опор |
1 | 2 | 3 | 4 | 5 |
5-4 | 226,5 | АС-240/32 | 1 | ПБ 110-3 |
6-4 | 160,1 | АС-240/32 | 1 | ПБ 110-3 |
3-5 | 241,3 | АС-240/32 | 1 | ПБ 110-3 |
2-5 | 212,5 | АС-240/32 | 1 | ПБ 110-3 |
2-3 | 3,4 | АС-120/19 | 1 | ПБ 110-3 |
1-5 | 145 | 2хАС-240/32 | 2 | ПБ 110-4 |
Проверка ку по ПА режиму все принятые провода прошли.