4. если операторы
5. если оператор
IV. 1. Найти собственные функции и собственные значения оператора
если
где
2. Найтисобственные функции и собственные значения оператора
(Оператор задан в сферических координатах).
3. Найтисобственные функции и собственные значения оператора
(Оператор задан в сферических координатах).
4. Найти собственные функции и собственные значения оператора
если
5. Найти собственные функции и собственные значения оператора
V. 1. Вычислить среднее значение
2. Вычислить среднее значение кинетической энергии
линейного гармонического осциллятора, если состояние его описывается функцией
3. Волновая функция состояния частицы имеет вид
где
4. В некоторый момент времени частица находится в состоянии
где
5. Найти среднее значение физической величины, представляемой оператором
если состояние частицы описывается функцией
VI. Определить возможные значения физической величины, представляемой оператором
и их вероятности для системы, находящейся в состоянии:
1.
2.
3.
4.
5.
(Оператор задан в сферических координатах)
Литература
1. Дирак П. Принципы квантовой механики.– М: Наука, 1979.
2. Вакарчук І.О. Квантова механіка: Підручник.– Львів: ЛДУ ім.. І. Франка, 1998.
3. Блохинцев Д.И. Основы квантовой механики. М.: Наука, 1983.
4. Давыдов А.С. Квантовая механика. М.: Наука, 1973.
5. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Наука, 1989.
6. Юхновський І.К. Квантова механіка. Київ: Либідь, 1995.
7. Федорченко А.М. Теоретична фізика. Київ: Вища школа, 1993, т. 2.
8. Фок В.А. Начала квантовой механики. М.: Наука, 1976.
9. Шифф Л. Квантовая механика. М.: Из-во иностр. лит., 1959.
10. Мессиа А. Квантовая механика: в 2-х томах, М.: Наука, 1978, т. 1.
11. Иродов И.Е. Задачи по квантовой физике. М.: «Высшая школа», 1991.
12. Галицкий В.М., Карнаков Б.М., Коган В.И. Задачи по квантовой механике. М.: Наука, 1981.
13. Арфкен Г. Математические методы в физике. М.: Атомиздат, 1970.
14. Рихтмайер Р. Принципы современной математической физики, М.:1982.
[1] Бор.М. Атомная физика. – М.: Мир, 1965, с 119