Смекни!
smekni.com

Научно-технический прогресс газотурбинных установок магистральных газопроводов (стр. 9 из 10)

Мощностной ряд ГТД можно условно разделить на четыре класса:

- микротурбины – имеют мощность от 30 кВт до 250 кВт, применяются обычно в составе автономных энергоагрегатов для выработки электроэнергии или совместного производства электрической, тепловой энергии и в ряде случаев для производства холода;

- ГТД малой мощности – от 250 кВт до 10 МВт, для механического и морского привода, привода электрогенераторов в составе ГТЭС простого цикла и в когенерационных установках для совместного производства электрической и тепловой энергии;

- ГТД средней мощности - от 10МВт до 60 МВт для механического и морского привода, в составе ГТЭС простого и комбинированного парогазового цикла и в когенерационных установках;

- ГТД большой мощности – от 60 до 350 МВт, используются в составе ГТЭС комбинированного парогазового цикла и в когенерационных установках; значительно реже – в простом цикле.

Важнейшими удельными параметрами, определяющими степень технического совершенства наземных и морских ГТД, являются удельная мощность и эффективный КПД на выходном валу.

Удельная мощность (аналогично ТВД и вертолетным ГТД) представляет собой мощность, приходящуюся на единицу (1 кг/с) расхода воздуха Gв , и численно равна удельной работе цикла (кДж/кг), кВт/кг/с.

Nуд = Nе / Gв.

Современные наземные и морские ГТД постоянно развиваются в сторону повышения удельной мощности за счет увеличения температуры газа перед турбиной, совершенствования аэродинамики лопаточных машин и систем охлаждения. В настоящее время особенно значителен прогресс в повышении параметров мощных одновальных энергетических ГТД. Это объясняется интенсивным заимствованием авиационных технологий в области трехмерной аэродинамики, применением многослойных теплозащитных покрытий (ТЗП) и эффективных систем охлаждения турбины, использованием теплообменников для снижения температуры охлаждающего воздуха и водяного пара в качестве охладителя.

Удельная мощность новейших серийных энергетических ГТД достигает 400...450 кВт/кг/с при освоенной температуре газа перед турбиной Т*СА = 1700 К (при работе в базовом режиме с межремонтным ресурсом 25 000 часов). Разрабатываются опытные модели энергетических ГТД с температурой газа перед турбиной Т*СА = 1783 К.

Удельная мощность ГТД малой и средней мощности достигает значений 300…350 кВт/кг/с при максимальной температуре газа на номинальном режиме Т*СА = 1500…1600 К.

Важнейшим удельным параметром наземных и морских ГТД является эффективный КПД ηе . Он характеризует топливную эффективность и представляет собой отношение эффективной мощности на валу Ne к мощности, подведённой с топливом Nтопл , кВт:

Nтопл = GтчасНu/3600, ηе = Ne / Nтопл=

,

где Gт час – часовой расход топлива ГТД, кг/ч; Нu – низшая теплота сгорания, кДж/кг.

Повышение эффективного КПД – важнейшее направление развития ГТД – достигается повышением параметров цикла Т*СА и π*к в оптимальном соотношении, а также уменьшением внутрицикловых потерь за счет совершенствования аэродинамики лопаточных машин, систем охлаждения и снижения потерь по тракту ГТД.

Эффективный КПД зависит также и от класса мощности – у ГТД меньшего класса мощности КПД, как правило, ниже (рис. 23). Эта зависимость проявляется через фактор размерности. В ГТД меньшей мощности более умеренные параметры цикла, так как сложнее получить высокий КПД на малоразмерных лопаточных машинах. Параметры цикла, кроме этого, влияют и на удельную стоимость ГТД. Эффективный КПД современных ГТД простого цикла составляет ηе = 0,18…0,43.

Удельная стоимость ГТД - экономический параметр, характеризующий стоимость 1 кВт установленной мощности ГТД в определенной стандартной комплектации. Например, если ГТД применяется для механического привода, в состав оборудования входят: система запуска, управления, противообледенительная и противопожарная, входное и выходное устройства, редуктор и некоторые другие. С ростом мощности ГТД существенно снижается его удельная стоимость. Так, например, удельная стоимость ГТД для механического привода составляет от 400…450 $/кВт (для ГТД класса мощности 1 МВт) до 170…180 $/кВт (для ГТД мощностью 30…40 МВт).


8. Особенности требований к приводным ГТД для ГПА

Энергетика и механический привод являются важнейшими областями применения наземных ГТД: в суммарном объеме мирового производства наземных и морских ГТД энергетические ГТД составляют около 91%, приводные ГТД – около 5% (по стоимости). В России основной потребитель ГТД - газотранспортные подразделения ОАО "Газпром", однако и в энергетике в последнее время наблюдается быстрый рост спроса на газотурбинные приводы.

8.1 Требования к характеристикам ГТД

Основными характеристиками ГТД, определяющими его размерность и техническое совершенство, являются номинальная мощность на выходном валу (Ne ном) и эффективный КПД (ηе) на режиме номинальной мощности.

Ne ном - это максимальная длительная мощность в определенных стандартных условиях (см. ниже), при которой обеспечиваются заявленные показатели ресурса, надежности и экономичности. ηе и Ne ном определяются для двух условий: условий по ISO 2314 и станционных условий.

Рис. 23. Зависимость эффективного КПД (ηе) наземных ГТД от мощности


Условия ISO 2314 (ГОСТ 20440-75):

1) параметры воздуха на входе (в плоскости входного патрубка компрессора): полное давление 0,1013 МПа, полная температура +15 °С, относительная влажность 60%;

2) параметры на выхлопе (в плоскости выхлопного патрубка турбины или на выходе из регенератора, если используется регенеративный цикл): статическое давление 0,1013 МПА;

3) сопротивление входного и выхлопного трактов ГПА не учитывается.

Параметры ГТД в условиях ISO используются для определения технического уровня двигателя и сравнения его с ближайшими аналогами.

Станционные условия отличаются от условий ISO учетом потерь полного давления во входном и выхлопном устройствах ГПА, которые обычно не превышают 1000 Па. Номинальная мощность должна обеспечиваться до температуры атмосферного воздуха +25°С (это требование может быть изменено для конкретного двигателя). Максимальная мощность ГТД – это предельная рабочая мощность, развиваемая при больших отрицательных температурах атмосферного воздуха. Максимальная мощность должна быть до 20% выше номинальной. Номинальный КПД проектируемых ГТД должен соответствовать современному техническому уровню или быть выше. КПД современных серийных ГТД для различных классов мощности приведены в табл. 4

Таблица 4


Примечание: показатели относятся к серийной товарной продукции мирового рынка простого и регенеративного цикла и не относятся к установкам сложных и комбинированных циклов. Перспективные разработки и прототипы могут иметь КПД на 1,5. ..2% (абсолютных) выше.

Нагрузочная характеристика двигателя ГПА (зависимость мощности от частоты вращения силовой турбины при постоянном режиме газогенератора) должна быть пологой - не более 5 % снижения мощности при частоте вращения СТ 70 % от номинальной.

Минимальная мощность, при которой допускается длительная эксплуатация ГТД, может составлять до 50 % от номинальной мощности.

Конструкция ГТД должна допускать возможность отбора сжатого воздуха из-за компрессора на станционные нужды и в противообледенительную систему. При этом соответственно снижаются мощность и КПД.

Двигатели ГПА работают на земле, в условиях запыленности, поэтому в процессе эксплуатации мощность снижается из-за загрязнения газовоздушного тракта двигателя (в основном, проточной части компрессора). Для восстановления мощности выполняют промывку газовоздушного тракта. При промывке на вход в двигатель при помощи промывочных устройств подаются специальные моющие растворы. Промывку выполняют на рабочем режиме или на режиме холодной прокрутки. Отличие промывки на рабочих режимах от промывки на холодной прокрутке заключается в расходах промывочной жидкости - на холодной прокрутке подается значительно больше моющей жидкости.

Рекомендуемая периодичность промывки:

- на рабочем режиме - через 300…1000 часов работы;

- на режиме холодной прокрутки - через 3000…5000 часов работы.

Промывки могут производиться и чаще в случае значительного снижения мощности ГТД при сильной загрязненности воздуха.


8.2 Требования к ресурсам и надежности

Класс использования ГТД для ГПА, как правило, базовый:

- время работы свыше 6000 ч/год;

- число пусков не менее 20 в год;

- время непрерывной работы – более 300 ч/пуск;

Срок службы ГТД – не менее 20 лет.

Ресурсы:

- назначенный – не менее 100000 ч;

- межремонтный – 20000…25000 ч.

Назначенный ресурс газогенератора ГТД, конвертированного из авиадвигателя, должен быть не менее 50000 час.

Надежность ГТД для ГПА определяется следующими основными показателями:

а) наработка на отказ по причинам, связанным с двигателем, ч:

Тотказ = Тр / Чотказ ,

где Тр – суммарное время работы парка двигателей, ч;

Чотказ – количество отказов.

Нормируемое значение Тотказ ≥ 3500 ч.

б) коэффициент надежности пусков

Кнп = П / Побщ ,

где П - количество удавшихся пусков;

Побщ - общее количество пусков с учетом неудавшихся.

Нормируемое значение Кнп ≥ 0,95.

в) коэффициент готовности


Кг = Тр /(Тр + Тпрост),

где Тр – суммарное время работы парка двигателей, ч;

Тпрост - суммарное время вынужденных простоев, связанное с устранением отказов, ч.