Токнебаланса может вызывать неправильную работу дифференциальной защиты, поэтому принимаются меры к ограничению его величины.
Для этой цели необходимо соблюдать следующие требования :
1. трансформаторы тока не должны насыщаться при токах сквозного к.з., что позволяет уменьшить токи намагничивания, а следовательно, а ток небаланса при внешних к.з.
. Это обеспечивается применением трансформаторов тока, насыщающихся при возможно больших значениях вторичной э.д.с., и уменьшением сопротивления плеч защиты, составляющих нагрузку трансформаторов тока при внешних к.з., от которой зависит величина .2. для уменьшения разности намагничивающих потоков характеристики намагничивания трансформаторов тока
и должны быть идентичными (совпадающими), а сопротивление плеч – по возможности равными. При этих условиях разность будет минимальной.Выполнение указанных требований весьма существенно ограничивает установившееся значение тока небаланса, обусловленный апериодической составляющей тока при внешнем к.з. или самосинхронизации генератора, может достигать значительной величины.
Для исключения работы дифференциальной защиты от тока небаланса в неустановившемся и установившемся режимах кроме отмеченных выше мер по уменьшению намагничивающих токов могут использоваться три способа:
1. уменьшение величины и продолжительности броска
в неустановившемся режиме;2. применение реле, отстроенных от бросков
, возникающих в этом режиме;3. применение реле с торможением от тока сквозного к.з.
Уменьшение броска тока небаланса достигается с помощью активного сопротивления порядка 5 Ом, включаемого последовательно с обмотками дифференциальных реле. Активное сопротивление ограничивает величину
и, кроме того, уменьшает постоянную времени вторичного контура трансформатора тока ( ). Однако включение значительного активного сопротивления (5 Ом) создаёт повышенную нагрузку на трансформаторы тока при к.з. в генераторе. В результате этого их погрешность увеличивается, что понижает чувствительность защиты и является недостатком, ограничивающим применение этого способа.В качестве второго, более совершенного способа применяется отстройка от неустановившихся токов небаланса включением дифференциального реле через быстронасыщающийся трансформатор.
Третий способ предусматривает использование в качестве дифференциального реле – реле с торможением, автоматически заглубляющихся при внешнем к.з. одновременно с ростом тока небаланса.
Защита выполняется на реле с торможением и быстронасыщающемся трансформатором типа ДЗТ-11/5. Реле имеет рабочую обмотку с ответвлением посредине и тормозящую обмотку.
Тормозящую обмотку целесообразно присоединять к трансформаторам тока со стороны линейных выводов. Торможение позволяет увеличить чувствительность защиты за счёт отстройки от внешних и к.з. и асинхронного режима.
2.2 Выбор уставок
Номинальный ток генератора:
кАВыбираем ТТ с коэффициентами трансформации:
12000/5 – для линейных выводов генератора;
6000/5 - для нулевых выводов генератора.
Номинальный вторичный ток:
– для линейных выводов генератора
- для нулевых выводов генератора
.Принимаем число витков рабочей обмотки реле:
.- для линейных выводов генератора; .- для нулевых выводов генератора.Вторичный минимальный ток срабатывания реле:
– для линейных выводов генератора; - для нулевых выводов генератора.Расчётный ток небаланса:
где:
- относительная погрешность ТТ, принимается 0,1; - коэффициент однотипности принимаем 1; - коэффициент, что учитывает апериодическую составляющую тока, для реле серии ДЗТ с насыщающимся трансформатором принимается равным 1,0; -периодическая составляющая тока короткого замыкания, кА. (А).Намагничивающая сила рабочей обмотки реле:
( ).По тормозной характеристике реле ДЗТ 11/5 определяем намагничивающую силу тормозной обмотки
(А).Расчётное число витков тормозной обмотки:
. ПринимаемКоэффициент чувствительности:
блок генератор релейный дифференциальный защита
3. Поперечная дифференциальная защита
3.1 Теоретические сведения
Защита от витковых замыканий имеет ограниченное применение вследствие отсутствия простых способов её осуществления.
Только для мощных генераторов, каждая из фаз которых выполнена в виде двух или более параллельных ветвей, выведенных наружу, разработаны относительно простые и надёжные схемы защиты.
В нормальных условиях и при внешних к.з. в параллельных ветвях
и каждой фазы генератора наводятся одинаковые по величине и фазе э.д.с. и . Сопротивления параллельных ветвей равны, поэтому токи ветвей и в нормальном режиме при внешних к.з. также равны по величине и совпадают по фазе.Рис.3 Схема и принцип действия поперечной дифференциальной защиты генератора
В случае замыкания части витков
ветви одной фазы в закороченных витках под действием их э.д.с. возникает большой ток к.з. , циркулирующий по закороченным виткам.Электродвижущая сила и сопротивление повреждённой ветви (на рис.2 ветвь 2) уменьшается за счёт повредившихся витков
замкнутых накоротко. В результате этого нарушается баланс э.д.с. и , а также токов и в параллельных ветвях повреждённой фазы. Появляется э.д.с. , под действием которой в контуре повреждённой фазы возникает уравнительный ток ,где
и – индуктивные сопротивления ветвей и (активные сопротивления не учитываются, так как они очень малы); и – э.д.с. неповреждённой и повреждённой ветвей.