где
После выбора всех турбин производим проверку коэффициента теплофикации, величина которого ранее выбиралась в заданных пределах. Фактический (или расчетный) коэффициент теплофикации определяется как:
где
Рис.1. Зависимость возможного отбора пара производственных параметров от величины отбора пара отопительных параметров для турбины типа ПТ
Определение мощности пиковой котельной
Мощность пиковой котельной, необходимой для покрытия отопительной нагрузки, помимо отборов турбин, составит:
Используя зависимость между часовым и годовым коэффициентом теплофикации (рис.2; П-1), определяется годовой коэффициент теплофикации (
а) годовой отпуск тепла на отопление из отборов:
б) годовой отпуск тепла на отопление из пиковой котельной:
Выбор энергетических котлов
По расходам пара на выбранные турбины с учетом 2 – 3% потерь определяем суммарную паропроизводительность котельной ТЭЦ (
Правила выбора котлов следующие:
1. Параметры пара котлов должны соответствовать начальным параметрам пара турбин, т.е.
2. Котлы должны быть по возможности однотипными.
Выбираем тип котлоагрегата ТГМ-104 с паропроизводительностью
Число котлоагрегатов определяется по формуле:
Здесь
При отключении одного котла должна полностью обеспечиваться вся внешняя тепловая нагрузка ТЭЦ, то есть:
Определение мощности электростанций и линий электропередач
Определение мощности электростанций и линии электропередач, связывающей ТЭЦ с энергосистемой, принимаем равной 40 – 60% мощности проектируемой ТЭЦ, т.к. ТЭЦ обычно располагается в самом промышленном районе, где потребляется значительная часть вырабатываемой электроэнергии.
Установленная электрическая мощность ТЭЦ равна сумме номинальных мощностей выбранных турбин:
Мощность электростанции и линии электропередач:
Определение длины линий электропередач
Длина линий электропередач принимается согласно её мощности (табл.3; П-1)
Определение мощности тепловых сетей
Мощность тепловых сетей в данном расчете принимается равной суммарной тепловой нагрузке района:
1.2 Технико-экономический выбор турбин и котлоагрегатов для раздельной схемы энергоснабжения
Конденсационная электростанция (КЭС) обычно располагается вне промышленного района, параметры оборудования на ней определяются нагрузками нескольких районов. Поэтому из условия экономичности в качестве проектируемой КЭС выбираем одну из крупных современных КЭС в блочной компоновке К-500-240, к установке на ней принимаем четыре крупных агрегатов.
Установленная электрическая мощность КЭС:
где
Определение мощности промышленной и районной отопительной котельных
Теплоснабжение в раздельной схеме осуществляется от котельных:
промышленной – мощность равна
Мощность подстанции и линии электропередач выбирается из условия передачи в район полезной электрической нагрузки в размере полезной нагрузки, которую может отпустить замещаемая ТЭЦ. С учетом в потерях электроэнергии на собственные нужды и в электрических сетях для раздельной и комбинированной схем энергоснабжения эта полезноотпускаемая мощность (и, следовательно, мощность линии электропередач) принимается равной:
Длину линии электропередач определяем по таблице 3 П-1 в соответствии с её мощностью:
Мощность тепловых сетей принимаем равной суммарной тепловой нагрузке района:
2. Расчет капитальных вложений при комбинированной и раздельной схемах энергоснабжения
Капитальные вложения рассчитываются по укрупненным показателям.
2.1 Расчет капитальных вложений при комбинированной схеме энергоснабжения
Общие капитальные вложения при комбинированной схеме
Капитальные вложения в ТЭЦ:
где
Капитальные вложения в пиковую котельную указаны в таблице 4, П-1. Поскольку