1.6 Проницаемость
Проницаемость - это способность клеток и тканей поглощать, выделять и транспортировать химические вещества, пропуская их через мембраны клеток, стенки сосудов и клетки эпителия. Живые клетки и ткани находятся в состоянии непрерывного обмена химическими веществами с окружающей средой, получая из нее продукты питания и выводя в нее продукты метаболизма. Основным диффузионным барьером на пути движения веществ является клеточная мембрана. В 1899 году Овертон обнаружил, что дегкость прохождения веществ через клеточную мембрану зависела от способности этих веществ растворяться в жирах. В то же время ряд полярных веществ проникал в клетки независимо от растворимости в жирах, что можно было объяснить существованием в мембранах водных пор.
В настоящее время различают пассивную проницаемость, активный транспорт веществ и особые случаи проницаемости, связанные с фагоцитозом и пиноцитозом.
Основные виды диффузии - это диффузия веществ путем растворения в липидах мембраны, диффузия веществ через полярные поры, диффузия ионов через незаряженные поры. Особыми видами диффузии являются облегченная и обменная. Она обеспечивается особыми жирорастворимыми веществами-переносчиками, которые способны связать переносимое вещество по одну сторону мембраны, диффундировать с ним через мембрану и освобождать по другую сторону мембраны. Роль специфических переносчиков иона выполняют некоторые антибиотики, получившие название ионофорных (валиномин, нигерицин, моненсин, поеновые антибиотики нистатин, аифотерицин В и ряд других). Ионофоры могут быть разделены в свою очередь на три класса в зависимости от заряда переносчика и структуры кольца: нейтральный переносчик с замкнутым ковалентной связью кольцом (валиномицин, нактины, полиэфиры), заряженный переносчик с кольцом, замкнутым водородной связью (нигерицин, монензин). Заряженные переносчики с трудом проникают в заряженной форме через модельные и биологические мембраны, в то же время в нейтральной форме они свободно диффундируют в мембране. Нейтральная форма образуется путем формирования комплекса анионной формы переносчика с катионом. Таким образом, заряженные переносчики способны обменивать катионы, находящиеся преимущественно по одну сторону мембраны на катионы расвора, омывающего противоположную сторону мембраны.
Наиболее распространенным видом пассивной диффузии клеточных мембран является порная.
В пользу реально существующего порного механизма проницаемости свидетельствуют данные об осмотических свойствах клеток.
Классическое уравнение осмотического давления:
p = s cRT,
где p - осмотическое давление, с - концентрация растворенного вещества, R - газовая константа, T - абсолютная температура, включает дополнительный член s, изменяющийся от нуля до 1. Эта константа, получившая название коэффициента отражения, соответствует легкости прохождения через мембрану растворенного вещества в сравнении с прохождением молекулы воды.
Вид проницаемости, свойственный только живым клеткам и тканям, получил название активного транспорта. Активный транспорт - это перенос вещества через клеточную мембрану из окружающего раствора (гомоцеллюлярный активный транспорт) или через клеточный активный транспорт, протекающий против градиента электрохимической активности вещества с затратой свободной энергии организма. В настоящее время доказано, что молекулярная система, отвечающая за активный транспорт веществ, находится в клеточной мембране.
В настоящее время доказано, что основным элементом ионного насоса является Na+ K+ АТФ-аза. Изучение свойств этого мембранного фермента показало, что фермент только в присутствии ионов калия и натрия, причем ионы натрия активизируют фермент со стороны цитоплазмы, а ионы - из окружающего раствора. Специфическим ингибитором фермента является снрдечный гликозид-суабаин. В мембранах митохондрий известна другая молекулярная система, обеспечивающая откачку ионов водорода фермент H+ - АТФаза.
П.Митчел, автор хемиосмотической теории окислительного фосфолирования в митохондриях, ввел понятие вторичного активного транспорта веществ. Известны три способа трансмембранного переноса ионов в сопрягающих мембранах. Однонаправленный перенос ионов в направлении электрохимического градиента путем свободной диффузии или с помощью специфического переносчика - унипорт. В последнем случае унипорт идентичен облегченной диффузии. Более сложная ситуация возникает в том случае, когда два вещества взаимодействуют с одним и тем же переносчиком. Этот случай симпорт подразумевает обязательное сопряжение потоков двух веществ в процессе переноса их через мембрану в одном направлении. Симпорт двух ионов электрически нейтрален, но осмотический баланс при этом нарушается. Следует подчеркнуть, что при симпорте электрохимический градиент, определяющий движение одного из ионов (например иона натрия или иона водорода) может быть причиной движения другого вещества (например молекул сазара или аминокислот), которое переносится общим переносчиком. Третий вид ионного сопряжения - актипорт - характеризует ситуацию, в которой два иона одного знака уравновешиваются через мембрану таким образом, что перенос одного из них требует переноса другого в противоположном направлении. Перенос в целом электронейтрален и осмотически уравновешен. Это вид переноса идентичен обменной диффузии.
Менее изучены два особых вида проницаемости - фагоцитоза - процесса захвата и поглощения крупных твердых частиц, и пиноцитоза - процесса захвата и поглощения частью клеточной поверхности окружающей жидкости с растворенными в ней веществами.
Все виды проницаемости в той или иной степени характерны для многоклеточных тканей мембран стенок кровеносных сосудов, эпителия почек, слизистой кишечника и желудка.
Для изучения пассивной и активной проницаемости используются различные кинетические методы. Наибольшее распространение получил метод меченных атомов.
Широко используются при исследовании проницаемости витальные красители. Сущность метода заключается в наблюдении с помощью микроскопа скорости проникновения молекул красителя внутрь клетки. В настоящее время широко используются флоурасцентные метки и среди них флуоресцин натрия, хлортетрациклин и др. Большая заслуга в развитии метода витальных красителей принадлежит Д.Н.Насонову, В.Я.Александрову и А.С.Трошину.
Осмотические свойства клеток и субклеточных частиц позволяет использовать это качество для изучения проницаемости воды и растворимых в ней веществ. Сущность осмотического метода заключается в том, что с помощью микроскопа или измерения светорассеяния суспензии частиц наблюдают изменение объема частиц в зависимости от тоничности окружающего раствора.
Все более широко для изучения клеточных мембран применяют потенциометрические методы. Широкий набор ионоспецифичных электродов позволяет исследовать кинетику транспорта многих ионов - K+, Na+, Ca2+, H+, CI- и др., а также органических ионов - ацетата, салицилатов и др.
Список использованных источников
1. Ремизов А. Н. Медицинская и биологическая физика: Учеб. для мед. спец. Вузов. – М.: Высшая школа, 1999. – 616 с.
2. Ливенцев Н. М. Курс физики: Учеб. для вузов. В 2-х т. – М.: Высшая школа, 1978. – т. 1. - 336 с., т. 2. - 333 с.
3. Волькенштейн М. В. Общая биофизика: Монография - М.: Наука, 1978. – 599 с.
4. Биофизика: Учебник / Тарусов Б. Н., Антонов В. Ф., Бурлакова Е. В. и др. – М.: Высшая школа, 1968. – 464 с.
5. Аккерман Ю. Биофизика: Учебник. – М.: Мир, 1964. – 684 с.
6. Ю. А. Владимиров, Д. И. Рощупкин, А. Я. Потапенко, А. И. Деев Биофизика: Учебник. - М.: Медицина, 1983.