Смекни!
smekni.com

Оценка технического состояния трансформаторных вводов на основе нечетких алгоритмов (стр. 7 из 8)

dm Рекомендации по дальнейшей эксплуатации
d1 ввод нормально эксплуатируется с обычно принятой периодичностью контроля
d2 ввод подлежит немедленной отбраковке
d3 ввод с предполагаемым наличием дефекта, требует уточнения диагноза эксплуатационного состояния, допустимо оставить в эксплуатации с периодичностью контроля не позднее 1 год
d4 ввод с предполагаемым наличием дефекта, требует уточнения диагноза эксплуатационного состояния, ввод допустимо оставить в эксплуатации с периодичностью контроля не позднее 0,5 года
d5 ввод с предполагаемым наличием дефекта, требует уточнения диагноза эксплуатационного состояния, ввод допустимо оставить в эксплуатации с расчетной периодичностью контроля

Исходя из базы знаний, целесообразно ввести следующие входные параметры с соответствующими возможными диапазонами изменения [11]:

Таблица 3.10

В случае, когда при измерении x1 <0, то необходимо проверить тщательно результаты других измерений и повторно производить измерение параметра x1. Если это подтверждается, то ввод подлежит отбраковке.

Задача диагностики состоит в том, чтобы каждому сочетанию значений факторов поставить в соответствие одно из решений dm.

Параметры x1-x18, определенные выше, будем рассматривать как лингвистические переменные. Кроме того, введем еще одну лингвистическую переменную: d- опасность повреждения ввода, которая измеряется уровнями d1 - d5.

Для оценки значений лингвистических переменных x1, x2, x5, x6, x17, x11, x12, x13, x14, x15, x16, x17 будем использовать два терма: Н - низкий, В – высокий. Для оценки значений лингвистических переменных x3, x4, x8, x9, x10, x18будем использовать три терма: Н - низкий, С - средний, В – высокий. Каждый из этих термов задает нечеткое ограничение на множество, заданное с помощью соответствующей функции принадлежности.

Предполагаем, что функции принадлежности параметров x1,, x2, x5, x6, x17, x11, x12, x13, x14, x15, x16, x17 имеют одинаковый вид для каждого терма Н или В.(рис. 3.7.); функции принадлежности параметров x3, x4, x8, x9, x10, x18имеют одинаковый вид для каждого терма Н, С или В (рис. .8.).


Из таблиц 3.2 – 3.4 формулируем следующие нечеткие высказывания:

1)ЕСЛИ (x1= Н) и (x2 = Н) и (x1- Н) и [(x1= Н) или (x4 = С)] и

(x5= Н) и (x7 = Н) и (x8 = Н) и (x9 = Н) и (x10 = И) и (x11=Н) и [(x18= Н) или (x18 = С)],

то d = d1

2)ЕСЛИ [x3 = В),

или [(x3 = С) и (x2 = В)],

или {( x3 = С) и [(x1= В) или (x13 = В) или (x14=B)]}э

или [(x8 = С) и (x9 = С) и (x10 = С)],

или (x15 = В),

или (x16 = В),

или (x17 = В),

или [(x6 = В) и (x7 = В)],

или (x8 = В),

или (x9 = В),

или (x11 = В),

или {(x3 = С) и [(x4 = С) или (x4 = В)] и (x11 =В)},

то d = d2

3)ЕСЛИ [(x3=С) и (x1= Н) и (x12 = Н) и (x13 = Н) и (x14 = Н) и(x6 = Н) и (x7 = Н)],

то d = d3

4)ЕСЛИ [(x3 = С) и (x1 = Н) и (x12 = В) и (x13 = В) и (x14 = В) и(x8 = Н) и (x9 = Н) и (x10 = Н) и (x11 = Н)] или [(x18 = Н) и (x8=С) и (x10 = С) и (x13 = Н)],

то d = d4

5)ЕСЛИ [(x11 = В) и (x8 = Н) и (x9 = Н) и (x10 - Н)], или {( x11 =В) и [(x8 = С) или (x9 = С) или (x10=С)]},

то d = d5

Пользуясь функциями принадлежности, запишем эти логические высказывания в виде логических уравнений. При этом заменяем слово "и" операцией “^” (для краткости будем использовать знак "•", слово "или" операцией “V”.

Согласно общего алгоритма [10], решению задачи диагностики соответствует тот диагноз, который имеет максимальное значение функции принадлежности:

Однако для нашей задачи диагностики, в некоторых случаях нет необходимости вычислять все одномерные и многомерные функции принадлежности.

Отметим, что из выше приведенных правил ЕСЛИ...ТО... можно получить однопарамстрические правила:

ЕСЛИ (x3=В), то d = d2;

ЕСЛИ (x8 = В), то d = d2;

ЕСЛИ (x9 = В), то d = d2;

ЕСЛИ (x10= В), то d = d2;

ЕСЛИ (x15=В), то d = d2;

ЕСЛИ (x16 = В), то d = d2;

ЕСЛИ (x17 = В), то d = d2;

(при этом необходимо учитывать, что параметр xз измеряется по мостовой схеме, а параметры x8, x9, x10, x15, x16, x17 измеряются по методу хроматографического анализа);

двухпараметрические правила:

ЕСЛИ [(x3=С) и (x2 = В)], то d = d2;

ЕСЛИ [(x6 =В) и (x7= В)], то d = d2;

трехпараметрические правила:

ЕСЛИ [(x8 = С) и (x9 = С) и (x10 = С)], то d = d2;

ЕСЛИ {(xз = С) и [(x4=С) или (x4 = В)] и (x11 = В)}, то d = d2;

четырехпараметрические правила:

ЕСЛИ {(x3 =С) и [(x12=В) или (x13 = В) или (x14 = В)]},

то d = d2

ЕСЛИ [(x18 = Н) и (x8 = С) и (x10 = С) и (x13 = Н)]

то d = d4;

ЕСЛИ [(x11 = В) и (x8 = Н) и (x9 = Н) и (x10 = Н)],

то d = d5;

ЕСЛИ {( x11=В) и [(x8=С) или (x9 = С) или (x10 = С)]},

то d = d5;

семипараметрическое правило:

ЕСЛИ [(x3 = С) и (x1 = Н) и (x12 = Н) и (x13 = Н) и (x14 = Н) и

(x6 = Н) и (x7 = Н)], то d = d3;

девятипараметрическое правило: ЕСЛИ [(x3=С) и (x1= Н) и (x12 =В) и (x13= В) и (x14 = В) и (x8 = Н) и (x9 = Н) и (x0 = Н) и (x11 = Н)],

то d = d4

одиннадцатипараметрическое правило:

ЕСЛИ (x1 = Н) и (x2 = Н) и (x3 = Н) и [(x4 = Н) или (x4 = С)] и (x5 = Н) и (x7= Н) и (x8 = Н) и (x9 = Н) и (x10 = Н) и (x11 = Н) и [(x18 = Н) или

(x18 = С)],

то d = d1;

Отсюда следует целесообразность контроля в первую очередь по однопараметрическим правилам сначала параметра x3. Если x3 = В (при этом будем условно говорить, что параметр x3 больше принадлежит терму В, то сразу принимаем решение d = d2, иначе проверяем один из параметров x8 , x9 , x10, x15, x16, x17. Если один из этих параметров больше принадлежит терму В, то также сразу принимаем решение d2, иначе проверяем по двухпараметрическим правилам путем дополнительного рассмотрения параметра x2 (учитываем, что параметр x2 измеряется одновременно с параметром x3 при контроле на подстанции по методу измерения tg). Если условия по двухпараметрическим правилам не выполняются, то переходим к трехпараметрическим правилам и т.д.

Если измеряемые параметры не выполняются ни в одном из правил в базе знаний, то в этом случае необходимо вычислить многопараметрические функции принадлежности, исходя из однопараметрических функций принадлежности по формулам, а затем принимать решение.

Традиционная диагностика по правилам 1, 2, 3 является частным случаем предложенной выше методики с применением теории нечетких множеств.

Таким образом, целесообразно совмещать правила традиционной диагностики и теорию нечетких множеств, поскольку операции сравнения легче выполнять, чем вычисления функции принадлежности. В случае, когда правила традиционной диагностики не срабатывают, следует вычислять функции принадлежности.

Ниже приведем один практический пример, при котором правила традиционной диагностики не позволяют принять решение, а основанные на теории нечетких множеств - позволяют.

Данные измерений для диагностики ввода 110 кВ с маслом типа ГК приведены в таблицах 3.11 и 3.12.

Подставляя данные из таблиц 3.11 и 3.12 в формулы для x с учетом таблиц 3.5 – 3.8, получим значения параметров x. Проверка по одно-, двух-, трех-, четырех-, семи-, девяти- и одиннадцатипараметрическому правилу не дает ответа на диагноз. Это значит, что традиционная диагностика неприемлема в этой ситуации.

Подставляя в формулы найденные значения x, получим значения функций принадлежности. Все эти величины приведены в таблице 3.13.

Поставляя значения функций принадлежности из таблицы 3.13 получим:

Отсюда следует, что среди пяти диагнозов максимальное значение функции принадлежности имеет диагноз d2. Следовательно, ввод подлежит немедленной отбраковке.

Таблица 3.11 Данные измерений

(%)
1,06 1,0 1,4 1,0 0,8 1,2 1,3

Таблица 3.12 Данные измерений по методу ХАРГ (% об.

)