Смекни!
smekni.com

Розробка інвертора напруги для апаратури зв'язку (стр. 5 из 12)

На рис.1 кожна замкнута лінія із стрілками змальовує відповідну складову магнітного потоку, вказаного на цьому ж малюнку.

Співвідношення між потоками наступне:

(1.1)

де з цих же співвідношень виходить, що

(1.2)

2.3 Інвертор

Інвертор - це пристрій, призначений для перетворення постійного струму в змінний. На відміну від джерел безперебійного живлення, інвертори забезпечують значно більший час автономної роботи при меншій або порівнянній вартості. У перетворювальних пристроях режим інвертування дуже часто чергується з режимом випрямляння, тобто один і той же перетворювач може працювати і у випрямних і інверторних режимах. Наприклад, якщо керований випрямляч працює на двигун, то при розгоні двигуна перетворювач працює у випрямному режимі, енергія поступає з мережі змінного струму в навантаження. При гальмуванні двигуна, рух під уклон і так далі перетворювач працює в режимі інвертування, а потужність (енергія) та, що генерується двигуном, що гальмується, передається в мережу змінного струму.

Інвертор значно дешевший за міні-електростанцію, мініатюрний і легкий. Спільно з одним, або декількома акумуляторами він може працювати як автономне джерело безперебійного живлення для будинку, котельної, пожежних і охоронних систем. Якщо є мережева напруга 220 Вольт, він просто пропускає його "крізь" себе і, при необхідності, заряджає акумулятори. Якщо напруга в мережі зникла, миттєво починає генерувати змінну напругу 220 Вольт від акумуляторів. Час автономної роботи залежить від потужності навантаження і ємкості акумуляторів. Так, наприклад, чотирьох акумуляторів по 190 А/ч вистачить на 17 годин автономної роботи при постійному навантаженні 500 Вт. При появі мережевої напруги прилад автоматично перемкнеться в початковий стан очікування і зарядить акумулятори.

Класифікація інверторів.

Розрізняють два типи інверторів: інвертори, ведені мережею, мережні (залежні інвертори) і автономні (незалежні інвертори). Перші (залежні) віддають енергію з ланцюга постійного струму тільки в мережу змінного струму, яка необхідна інвертору принципово, для комутації струму з одного тиристора на іншій. Частота інвертування рівна частоті мережі. У автономних інверторах енергія з ланцюга постійного струму передається в навантаження змінного струму, що не має інших джерел змінної напруги. Комутація струму тиристорів здійснюється або по ланцюгу управління (керовані ключі), або спеціальним комутуючим пристроєм. Частота інвертування визначається тільки схемою управління.

Також існує класифікація інверторів за формою вихідної напруги. Розрізняють інвертори з квадратичною (square), з трапецієвидною (modifed sine ware) і з синусоїдальною формою (sine ware) вихідної напруги. Для навантаження з магнітними сердечниками (двигуни, трансформатори) модифікація форми напруги приводить до деякої зміни потужності. Для телевізорів, комп'ютерів, ламп розжарювання і нагрівальних приладів вказаний чинник значення не має. Особливий випадок - двигуни асинхронного типу (насоси, холодильники, кондиціонери), що вимагають достатньо високої якості електроживлення.

Інвертор - прилад перетворює постійну напругу в змінну. Потреба в інверторах існує для вирішення завдання живлення пристроїв для побутової мережі 220В 50Гц від джерел постійної напруги, наприклад акумуляторів. З розвитком електроніки це завдання вирішувалося усе більш складними методами, що дають якісніші параметри вихідної електроенергії. Проте на практиці застосовуються як сучасні, так і більш архаїчні прилади, тому розглянемо основних типів інверторів в історичному порядку.

Першими з'явилися інвертори на основі трансформаторів тих, що працюють на частоті мережі 50Гц. Блок-схема інвертора приведена на мал. №1.

Рис 2.3.1 Блок-схема трансформаторного інвертора.

Джерело енергії постійного струму, в найпоширенішому випадку акумулятор 12В, підключається до трансформатора через трипозиційний комутатор. Комутатор є набором електронних ключів, що забезпечує 3 стани: до первинної обмотки трансформатора підключено джерело живлення позитивною полярністю, до первинної обмотки трансформатора підключено джерело живлення негативною полярністю і стан коли первинна обмотка закорочена. Послідовно перемикаючи ці стани, на первинній обмотці формується змінна напруга частотою 50Гц і амплітудою 12В. На вторинній обмотці трансформатора при цьому формується напруга з тією ж частотою і формою, проте ефективна напруга складає 220В. Графіки напруги на трансформаторі приведені на мал. №2. Вихідна напруга знімається з вторинної обмотки, тому має такі ж параметри.

Рис.2.3.2 Графіки напруги на трансформаторі

Дана форма напруги називається "Модифікована синусоїда" і широко застосовується в інверторах для мережі 50Гц, тому параметри, що описують її, розглянуті детальніше. Взагалі параметри, задаючі форму модифікованої синусоїди, це амплітуда вихідної напруги і коефіцієнт заповнення, що показує відношення тривалості імпульсу до періоду сигналу. Ці параметри задаються при конструюванні інверторів. З міркувань того, що інвертор повинен замінювати мережу 220В 50Гц, зазвичай вибирається амплітудне значення напруги модифікованої синусоїди таке ж, як і в мережі, тобто 311В. При цьому, аби забезпечити ефективну напругу 220в, таке ж як і в мережі, коефіцієнт заповнення виходить 0.5. Проте в інверторі цього типа амплітуда вихідної напруги виходить залежною прямо пропорціонально від напруги джерела. Якщо як джерело енергії використовується акумулятор, а це найпоширеніший випадок, то його напруга при розряді знижується, і амплітуда модифікованої синусоїди на виході перетворювача також знижується, відповідно знижується і ефективне значення напруга на виході перетворювача. Для того, щоб поліпшити якість енергії на виході перетворювача в цих умовах часто застосовують схеми управління, які змінюють коефіцієнт заповнення вихідної напруги так, щоб підтримувати ефективну напругу незмінним. Наприклад, інвертор, розрахований на напругу джерела 12В, працює від розрядженого акумулятора з напругою 10В. При цьому амплітудна напруга на виході знижується пропорційно до 259В. Схема управління змінює коефіцієнт заповнення вихідної напруги до 0.72, при цьому ефективна напруга залишається рівним 220В. Проте форма напруги і його амплітуда міняється, що може бути недопустимо для деяких навантажень, що буде показане далі.

Оскільки основним елементом інвертора цього типа є трансформатор 50Гц, можливості по мініатюризації, зменшенні матеріаломісткості і підвищенні ефективності роботи інвертора вельми обмежені. Тому на основі сучасної елементної бази були розроблені інвертори з вч перетворенням. Блок-схема такого інвертора приведена на мал. №3.

Рис.2.3.3 Блок-схема інвертора з вч перетворенням.

Джерело енергії постійного струму підключається на вхід високочастотного перетворювача постійної напруги (dcdc перетворювач). Даний блок перетворить вхідну напругу в напругу, відповідну амплітуді мережевої напруги, 311В. Це перетворення відбувається за допомогою трансформатора, що працює на підвищеній (десятки і сотні кілогерц) частоті, тому габарити і матеріаломісткість інвертора значно зменшилися. Вихідна напруга перетворювача подається на комутатор, аналогічний комутатору в інверторі трансформаторного типа. Графік вихідної напруги комутатора має такий же вигляд, як і напруга на виході комутатора в трансформаторному інверторі, проте амплітуда напруги досягає 311В. Вихід комутатора є виходом інвертора, і графік вихідної напруги відповідає напрузі на вторинній обмотці трансформатора в трансформаторному інверторі (рис.2). Міркування щодо форми вихідної напруги, викладені вищі, справедливі і для даного типа інвертора. Зміна ж форми вихідної напруги залежно від величини вхідної напруги може відбуватися або немає, це залежить від топології dcdc перетворювача. Якщо перетворювач стабілізований, то при зміні вхідної напруги вихідна напруга перетворювача не змінюється. При цьому також форма і амплітуда вихідної напруги інвертора не змінюється. Проте існують і простіші різновиди dcdc перетворювачів, які не є стабілізованими, і вихідна напруга яких пропорційно вхідному. Для інверторів, зібраних на основі таких перетворювачів, справедливі висновку щодо зміни вихідної напруги для трансформаторних інверторів.

З розвитком електроніки з'явилася можливість створити інвертори з синусоїдальною формою напруги на основі вч перетворення електричної енергії. За допомогою даних інверторів можливе здобуття вихідної напруги, що задовольняє стандартам на якість електроенергії в енергетиці, що неможливе для перетворювачів раніше розглянутих типів. Блок-схема інвертора приведена на мал. №4.

Рис.2.3.4 Блок-схема інвертора з синусоїдальною вихідною напругою.

Джерело енергії постійного струму підключається на вхід високочастотного перетворювача постійної напруги, як і в інверторі з вч перетворенням, розглянутому раніше. Вихідна напруга інвертора може бути різною залежно від конструкції, проте воно має бути вище за амплітудну напругу мережі, тобто вище 311В. Вихідна напруга перетворювача поступає на вч інвертор (dc/ac), керований знижуючий імпульсний перетворювач, що є. Даний перетворювач може встановлювати на своєму виході напругу по сигналу від схеми управління в діапазоні від нуля до напруги живлення, тобто до напруги більше 311В. Вч інвертор зазвичай містить два таких каналу за мостовою схемою, таким чином, напруга між їх виходами може досягати від - 311В до +311В, як і в мережі 220В. Графіки вихідної напруги по обох вихідних дротах і результуюча вихідна напруга інвертора представлені на Рис.2.3.5 З графіків виходить, що схема управління подає особливий сигнал на кожен канал вч перетворювача, що змінюється в часі таким чином, що вихідна напруга кожного каналу вч перетворювача змінюється по синусоїдальному закону з частотою 50Гц, і зміщено по фазі на 180? між каналами. Напруга ж між виходами є синусоїдою без постійною складовою амплітудою 311В. Зміна форми вихідної напруги залежно від величини вхідної напруги не відбувається унаслідок того що або dc/dc перетворювач або вч інвертор виконуються стабілізованими, тобто вихідна напруга не залежить від вхідної.