Задания контрольной работы
1. Перечислить основные механизмы поляризации с указанием их главных особенностей. Приведите классификацию диэлектриков по виду поляризации. Назвать по 5-6 диэлектриков, относящихся к каждой группе, и указать значение диэлектрической проницаемости каждого названного диэлектрика
2. Объяснить, в чем заключается различие между понятиями "тангенс угла диэлектрических потерь" и "коэффициент диэлектрических потерь"
3. Синтетические и искусственные волокна. Их свойства и области применения в электропромышленности
4. Описать следующие материалы: вольфрам, золото, серебро, платину, никель, кобальт, свинец
5. Трубка из поливинилхлорида имеет размеры: внутренний диаметр d1=1,45 мм и внешний диаметр d2=4,5 мм. Построить графики зависимости диэлектрических потерь в температурном диапазоне от Т1=-200 С до Т2=600С: а) при постоянном напряжении U=1,5 кВ; б) при переменном напряжении U=1,5 кВ (действующее значение) частотой 50 Гц
1. Перечислить основные механизмы поляризации с указанием их главных особенностей. Приведите классификацию диэлектриков по виду поляризации. Назвать по 5-6 диэлектриков, относящихся к каждой группе, и указать значение диэлектрической проницаемости каждого названного диэлектрика
Поляризация – ограниченное смещение, связанных зарядов или ориентация дипольных молекул под действием внешнего электрического поля, при этом внутри диэлектрика создается собственное поле, направленное в сторону строго противоположную внешнему полю.
Основные виды поляризации
Величина заряда, накопленная в конденсаторе со сложным диэлектриком, обусловлена суммой различных механизмов поляризации, присущих данному диэлектрику.
Поэтому эквивалентной схемой замещения диэлектрика, в которой проявляются различные виды поляризации, служит ряд емкостей, включенных параллельно источнику питания (см. рис. 1,1).
Рисунок 1.1 – Эквивалентная схема замещения диэлектрика с различными видами поляризации
Заряд
Электронная поляризация
Электронная поляризация представляет упругое смещение и деформацию электронных оболочек атомов и ионов. Время установления электронной поляризации очень маленькое и составляет
Величина
где
Смещение и деформация электронных оболочек атомов и ионов, как явление, не зависит от температуры нагрева диэлектрика. Однако, с повышением температуры в связи с температурным расширением плотность материала уменьшается, число частиц в единице объема уменьшается и способность к поляризации также уменьшается (см. рис. 7.9).
Рисунок 1.2 – Температурная зависимость
Наиболее резкие изменения диэлектрической проницаемости от температуры характерны диэлектрикам (твердым и жидким) при достижении температуры фазового перехода (из твердого в жидкое, см. рис. 1.2; из жидкого в газообразное).
Температурная зависимость
Температурный коэффициент
Электронная поляризация в чистом виде наблюдается в нейтральных диэлектриках.
Очень важно знать поведение диэлектрика и изменение диэлектрической проницаемости в переменных полях с изменяющейся частотой. Для электронной поляризации характерным является то, что диэлектрическая проницаемость не зависит от частоты изменения поля (см. рис. 1.3). Это объясняется тем, что время установления поляризации очень мало.
Рисунок 1.3 – Частотная зависимость
Электронная поляризация наблюдается у всех видов диэлектриков, и не связана с рассеиванием энергии.
Ионная поляризация
Ионная поляризация характерна для твердых диэлектриков с ионным строением, и обуславливается упругим смещением ионов на расстояния меньшие постоянной решетки.
Наблюдается в веществах кристаллического строения с плотной упаковкой ионов. Время установления поляризации мало и составляет
С увеличением температуры поляризация возрастает, поскольку температурное расширение, удаляя ионы, друг от друга ослабляет действующие между ними упругие силы, т.е. для ионных соединений характерен положительный температурный коэффициент
Рисунок 1.4 – Температурная зависимость
Материалы с ионным строением с плотной упаковкой ионов отличаются тем, что их диэлектрическая проницаемость не зависит от частоты изменения поля, так как время установления поляризации очень мало.
Ионная поляризация не сопровождается затратами энергии и поэтому в схеме замещения отсутствует активный элемент – резистор.
Дипольно-релаксационная поляризация
Дипольно-релаксационная поляризация связана с ориентацией дипольных молекул, т.е. полярных молекул под действием электрического поля. Она возможна, если молекулярные силы не препятствуют ориентации диполей вдоль поля. Материалы с дипольно-релаксационной поляризацией характеризуются временем релаксации
Время релаксации
Рисунок 1.5 – Процесс заряда и разряда конденсатора. Графический способ определения времени
C увеличением температуры: с одной стороны молекулярные силы ослабевают и это усиливает поляризацию, а с другой стороны постепенно начинает нарастать тепловое хаотическое движение. Оно разрушает поляризацию.
В результате температурной зависимости
Рисунок 1.6 – Температурная зависимость