Смекни!
smekni.com

Основные электроматериалы (стр. 2 из 6)


Максимум

для дипольно-релаксационной поляризации наблюдается тогда, когда время релаксации
будет равно полупериоду действующего поля:

,

где

– частота изменения электрического поля, Гц.

С повышением частоты максимум

в температурной зависимости смещается в область высоких температур, так как большая частота требует меньшего времени релаксации, а меньшее время релаксации может быть получено при более высокой температуре.

Частотная зависимость

у диэлектриков с дипольно-релаксационной поляризацией существенно отличается от частотной зависимости
диэлектриков с электронной и ионной поляризацией. В данном случае
определяется суммарным действием дипольно-релаксационной и электронной поляризаций (см. рис 1.7).

Рисунок 1.7 – Частотная зависимость

для диэлектриков с дипольно- релаксационной поляризацией

По мере увеличения частоты дипольные молекулы могут не успевать ориентироваться за изменением электрического поля. В этом случае величина диэлектрической проницаемости снижается до уровня электронной поляризации, которая по максимуму не превосходит 2,5. Этому случаю соответствует определенная граничная частота

, которую можно найти из выражения:

.

С повышением температуры, например, с

до
граничная частота увеличивается, так как при большей температуре вязкость вещества уменьшается и время релаксации также уменьшается. В соответствии с приведенным ранее условием
четко видно, что граничная частота должна быть больше.

Данный вид поляризации сопровождается значительными потерями, поэтому в схеме замещения последовательно с емкостью

включается активный элемент – резистор.

Электронно-релаксационная поляризация

Электронно-релаксационная поляризация отличается от электронной и ионной поляризаций и возникает вследствие возбуждения тепловой энергией избыточных (дефектных) электронов или "дырок".

Электронно-релаксационная поляризация характерна для диэлектриков с высоким показателем преломления света

, большим внутренним полем и электронной электропроводностью. Например: диоксид титана, загрязненный примесями
(ниобий),
(кальций),
(барий); некоторые соединения на основе оксидов металлов переменной валентности – титана, ниобия, висмута.

При электронно-релаксационной поляризации может иметь место более высокое значение диэлектрическая проницаемость

, по сравнению с чисто электронной поляризацией, а также наличие максимума в температурной зависимости
.

Ионно-релаксационная поляризация

Наблюдается в неорганических стеклах и в некоторых ионных кристаллах неорганических веществ с неплотной упаковкой ионов. В этом случае слабо связанные ионы вещества под воздействием внешнего электрического поля среди хаотического теплового движения смещаются (ориентируются) в направлении поля.

После снятия электрического поля ионно-релаксационная поляризация постепенно ослабевает по экспоненциальному закону: с повышением температуры диэлектрическая проницаемость увеличивается подобно как и для материалов с плотной упаковкой ионов. В частотной зависимости

может наблюдаться максимум.

Миграционная поляризация

Миграционная поляризация рассматривается как дополнительный механизм поляризации, проявляющийся в твердых телах неоднородной структуры при макроскопических неоднородностях и наличии примесей. Она проявляется на низких частотах, и связана со значительным рассеиванием электрической энергии. Причинами такой поляризации является проводящие и полупроводящие включения в технических диэлектриках, содержащих несколько слоев с разной проводимостью.

При внесении неоднородного диэлектрика в электрическое поле свободные электроны и ионы проводящих и полупроводящих включений перемещаются в пределах каждого включения, образуя большие поляризованные области.

В слоистых материалах на границе раздела слоев и в приэлектродных слоях может происходить накопление зарядов медленно движущихся ионов.

Все это усиливает поляризацию, но и создает дополнительные потери.

Спонтанная поляризация (самопроизвольная)

Спонтанная поляризация существует у сегнетоэлектриков, которые обладают следующей особенностью. При отсутствии внешнего поля в них имеются области (микрообъемы), называемые доменами, обладающие собственным элементарным электрическим моментом. До наложения внешнего электрического поля ориентация этих моментов хаотичная, поэтому результирующий электрический момент равен нулю.

При наложении электрического поля ситуация существенно изменяется. В этом случае начинается преимущественная ориентация элементарных электрических моментов в каждом из доменов по направлению действующего поля, электрическая индукция

и
увеличивается. Однако, при некотором значении напряженности электрического поля
может произойти насыщение, т.е. элементарные электрические моменты в каждом из доменов принимают направление действующего электрического поля, дальнейший рост электрической индукции
прекращается и она достигает
, а диэлектрическая проницаемость
с этого момента начинает уменьшаться (см. рис. 1.8) .

Рисунок 1.8 – Зависимость

и
от напряженности электрического поля для сегнетоэлектриков

Зависимость

для сегнетоэлектриков используется в создании варикондов, т.е. специальных конденсаторов, величина электрической емкости которых зависит от величины приложенного напряжения.

В температурной зависимости

может наблюдается один или несколько максимумов. Для них характерно наличие точки Кюри (см. рис. 1.9).

Рисунок 1.9 – Температурная зависимость

для сегнетоэлектриков

При подходе к температуре, соответствующей точки Кюри, по мере нагрева материала в нем происходит перестроение кристаллической структуры и это усиливает поляризацию. Однако постепенно усиливается тепловое хаотическое движение. При достижении температуры, соответствующей точки Кюри, преобладающим фактором является тепловое хаотическое движение. Оно разрушает поляризацию и диэлектрическая проницаемость

резко уменьшается.

Это явление используется в создании специальных терморезисторов с положительным температурным коэффициентом сопротивления, которые называются позисторами. Температурная зависимость электрического сопротивления

позисторов приближается к релейной, т.е. при достижении температуры срабатывания их величина электрического сопротивления увеличивается на несколько порядков, что может быть использовано для самоограничения тока в электрической цепи (см. рис. 1.10).