Запишем систему уравнений по методу контурных токов, учитывая J1:
– (R5 + R6) * I11 + (R2 + R5 + R6 + R7) * I22 = R6 * J1 + E6
-10 * I11 + 20 * I22 = 30
Решим систему по методу Крамера. Найдем определители:
D =
Найдем контурные токи:
I11 = D11/D = -1 A; I22 = D22/D = 1 A
Токи в ветвях найдем как сумму контурных токов, текущих по ним, с учетом знаков:
I2 = I7 = I22 = 1A
I6 = – I11 + I22 – J1 = 1A
I5 = I11 – I22 = -2 A
I4 = J1 = 1A
I3 = I11 + J1 = 0
I1 = I11 = -1A
Проверка
1) Баллансмощностей:
I3*I3*R3 + I4*I4*R4 + I5*I5*R5 + I6*I6*R6 + I2*I2*(R2+R7) = E6*I6 + E1*I1 + J4 * U4,
5 + 5 + 20 + 10 = 25 – 10 + 25,
40 = 40
2) Проверка по первому закону Киргофа:
I4 + I1 = I3;
I6 + I3 = I2;
I4 + I5 + I6 = 0;
I1 = I2 + I5;
Задание 3
Принципиальная схема цепи выглядит следующим образом:
| |||
|
I11*(R7+R3) – I22*R3 = E6 – E3
– I11*R3 + I22*(R2 + R3 + R4) = E3 + J1*R2
32/3*I22 – 4*I11= 28;
Решим систему по методу Крамера. Найдем определители:
D =
Найдем контурные токи:
I11 = D11/D = 1 A; I22 = D22/D = 3 A
Теперь посчитаем токи во всех ветвях.
I1= J1 = 1 A
I2= I22 – J1= 2 A
I3 = I22 – I11 = 2 A
I4 = – I22= -3 A
I6 = I11 – J1 = 0 A
I7 = I11 = 1 A
· Теория, метод узловых потенциалов
Возьмём для примера ПЭС изображённую на рисунке 2.В изображённой цепи есть 3 узла. Так как любая(одна) точка схемы может быть заземлена без изменения токораспределения в ней, один из узлов схемы можно заземлить, то есть принять потенциал равным 0. Заземлим узел с потенциалом
Затем воспользуемся обобщённым законом Ома для участка цепи, содержащего источник ЭДС, позволяет найти ток этого участка по известной разности потенциалов на концах участка цепи и имеющейся на этом участке ЭДС E. По обобщенному закону Ома, запишем систему:
Подставим
– это и есть уравнения по МУП.
Уравнения имеют следующую структуру. Потенциал узла умножается на его собственную проводимость
Теперь рассмотрим случай, когда в цепи будут присутствовать источники тока (рис 3). Проводимость первой ветви в этом случае будет равняться нулю, и первое уравнение будет выглядеть следующим образом:
источник тока вписываем в правую часть со знаком «плюс», если он направлен к узлу и со знаком «минус» в противоположном случае. Количество уравнений не уменьшается, так как уравнения по
МУП не зависят от изначально выбранных направлений токов в ветвях. Количество уравнений по МУП рассчитываются по формуле:
Докажем правильность расстановки знаков, обратившись к стандартной ветви (рис 4). Рассмотрим схему, содержащую
Здесь:
Значит
Для любого узла выполняется первый закон Кирхгофа (выбрасываем только собственный узел).
Учитываем, что узел
Отсюда
сумма проводимостей всех ветвей, сходящихся к узлу, умноженная на потенциал собственного узла, взятая со знаком «плюс», минус сумма произведений проводимостей между i-м и j-м узлом и потенциалов соответствующих узлов равна взятой со знаком «минус» сумме произведений источников на проводимости.