Решение. Между функциями
Если соотношение (2.1) использовать в качестве определения
в результате, как нетрудно убедиться, получится обратное соотношение (2.2). Аналогичные соображения использованы ниже при выводе соотношения (2.8).
Положим далее
тогда для Фурье-образа потенциала будем иметь
Предполагая, что волновая функция
Подставляя сюда вместо
В двойном интеграле перейдем от интегрирования по переменной
Это и есть искомое интегральное уравнение с Фурье-образом потенциала
Необходимо отметить, что из условия нормировки
следует равенство
Это можно показать, подставив в (2.7) выражение (2.1) для функции
Если здесь сначала выполнить интегрирование по
2. Методы численного решения нестационарного уравнения Шредингера
2.1 Метод конечных разностей для одномерного нестационарного уравнения Шредингера
В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.
Нестационарное уравнение Шредингера, определяющее эволюцию волновой функции во времени, представляет собой дифференциальное уравнение первого порядка по времени и имеет следующий вид
где
Общее решение уравнения (1) формально можно записать в виде
где
Особенностью выражения (3.2) является то, что в показателе экспоненты стоит оператор. Определить действие оператора эволюции на волновую функцию можно, например, разложив ее по собственным функциям оператора
Аналогичное выражение может быть получено и для непрерывного спектра.
Разложение (3.3) удобно использовать в тех случаях, когда решения стационарного уравнения Шредингера для конкретной задачи являются известными. Но к сожалению круг таких задач очень ограничен. Большинство современных численных методов решения уравнения (3.1) основаны на использовании различных аппроксимаций оператора эволюции
здесь
дает неудовлетворительный результат. (См. программный блок 1)[3]
2.2 Преобразование Фурье
Начнем с комплексного ряда Фурье
Рассмотрим случай L
Таким образом, полученные выше формулы приобретают вид