Курсова робота з теми:
Плоскі діелектричні хвилеводи
для ТІ поляризації
Зміст
Введення
1. Змінне електромагнітне поле в однорідному середовищі або вакуумі
2. Параметри середовища
3. Граничні умови
4. Формули Френеля
5. Відбивна й пропускна здатність. Кут Брюстера
6. Повне внутрішнє відбиття
7. Рівняння, що описують поширення електромагнітних хвиль у плоскому оптичному хвилеводі
8. Дисперсійні рівняння тришарового діелектричного хвилеводу
Висновок
Список літератури
Введення
У роботі поставлені завдання вивчення принципу роботи тонких діелектричних хвилеводів. Для цього потрібно намалювати картину поширення хвиль у хвилеводі. Але до цього потрібно вивчити самі електромагнітні хвилі, їхньої властивості (тобто поводження хвиль на границях розділу), окремі випадки (такі як геометрична оптика й рівняння Френеля). І потім уже приступитися до розгляду питання поширення електромагнітних хвиль у тонкому хвилеводі. Тонкоплівковий хвилевід являє собою нанесену на підложку смужку тонкої плівки, показник переломлення якої більше показника переломлення підложки.
1. Змінне електромагнітне поле
Запишемо систему рівнянь Максвелла для однорідного поля або вакууму:
Якщо в просторі відсутні струми й заряди, то рівняння
(1) і (2) переходять до виду:
Тепер беремо до уваги, що
Диференціювавши (7) по
З огляду на друге рівняння, одержуємо:
Тому що
Звідси маємо:
- це хвильове рівняння, що описує поширення хвиль зі швидкістю
Рішення цього рівняння записується найбільше просто випадку, коли
зробимо заміну змінних
одержимо:
Робимо висновок, що загальне рішення має вигляд:
де
Тепер урахуємо, що діелектрична й магнітна проникності - це комплексні величини:
значить
де
Або
де
Одержали ще одне хвильове рівняння, у скалярному виді. Його рішення буде мати вигляд:
У випадку плоскої хвилі вектори E,H,k ортогональні й відношення модулів векторів E,H :
є характеристичний хвильовий імпеданс.
2. Параметри середовища
При описі поширення хвилі в середовищі, крім
3. Граничні умови
Виходячи з умов Максвелла в інтегральній формі, можна визначити умови для векторів E,D,H,B на границі роздягнула двох середовищ, з різними
Де індексом i позначені частки векторів, дотичні до поверхні роздягнула двох середовищ 1 і 2. А індексом n – частки нормальні до цієї поверхні. Величина J – щільність поверхневих струмів провідності, а
У такий спосіб:
4. Формули Френеля
Нехай А - амплітуда електричного вектора поля падаючої хвилі. Будемо вважати її комплексною величиною з фазою , рівної постійної частини аргументу хвильової функції. Змінна її частина має вигляд: