Конкретний вид функції Y(y) визначається із цього рівняння з урахуванням граничних умов і описує розподіл амплітуд фаз у поперечному перерізі шару й прилягаючих середовищ. Повний же вид рішення визначається як добуток Y(y)Z(z) і з урахуванням тимчасової залежності
Таким чином, рішення має вигляд гармонійної хвилі, що поширюється уздовж осі Y і має амплітудний розподіл Y(y) у напрямку, поперечному стосовно напрямку поширення.
Отже, потрібно знайти граничні умови, що задовольняють рівнянням безперервності дотичних E і H тридцятимільйонний компонент електромагнітного поля для ТІ хвиль мають вигляд:
Помітимо, що умови безперервності H- на границях еквівалентна умовам безперервності похідних від розподілу E- поля на границях шарів 1 і 2, 2 і 3. Нехай у розглянутій системі із трьох шарів виконується необхідна умова існування режиму, тобто
Умова А.
При цьому свідомо виконуються умови
Умова В.
В області 2 рішення може бути представлене у вигляді гармонійної функції, оскільки
В областях рішення буде мати вигляд експонент із дійсним показником ступеня. Очевидно, що фізично реалізований випадок відповідає експонентам, що спадають при видаленні від границі 1 у позитивному напрямку й від границі 3 у негативному напрямку. Як видно, у цьому випадку максимальна напруженість поля спостерігається усередині центрального шару хвилеводу. Напруженість поля спадає при видаленні від його границь, при цьому основна частка енергії хвилі переноситься в самому шарі 2 і прилеглих областях шарів, що обрамляють, 1 і 3, без випромінювання в навколишній простір. Такий режим називається хвиле водним, а центральний шар 2 часто називають несучим шаром хвилеводу.
Умова С.
Рішення має експонентний характер в області 1 і гармонійний характер в областях 2 і 3. Поле є експоненціальне спадаючої при видаленні від границі в середовищі 1. поява осциляції в середовищі 3 може бути інтерпретоване як результат інтерференції двох плоских електромагнітних хвиль, що біжать: однієї хвилі - випромінюваної із хвилеводу, інший, рівної по амплітуді, що набігає на хвилевід з нескінченності. Припущення про існування хвилі, що набігає, знадобилося тут, щоб зберегти стаціонарність завдання уздовж осі z, тобто як би компенсувати втрати енергії на випромінювання , що з'являється при
Умова D.
Рішення має синусоїдальний характер для всіх трьох областей; має місце випромінювання із хвилеводу як у третю, так і в першу середовища, що обрамляють. Такі моди називають випромінювальними модами хвилеводу.
Основні результати аналізу. У системі, що складається із трьох діелектричних шарів з показниками переломлення n1, n2, n3 за умови n2>n1, n2>n3 можливе поширення хвилі уздовж шару 2, при цьому розподіл електромагнітного поля в поперечному перерізі має максимальне значення усередині центрального шару 2 (можливе існування декількох максимумів) і експоненциальне спадає при видаленні від границь шару 2 у напрямку осі ОУ (або - ОУ). Хвиля з неоднорідним розподілом по координаті в поширюється уздовж площини хвилеводу й характеризується постійної поширення
8. Дисперсійні рівняння тришарового діелектричного хвилеводу
Розглянемо тришаровий хвилевід.
Припустимо, що він нескінченно протяжний, тобто
Одержимо наступні рівняння:
Звідси видно, що для ТІ хвилі, тільки компоненти
Знайдемо рішення рівнянь у вигляді:
де A, B, C, D, q, h, p – постійні, які потрібно визначити. Із граничних умов для
Крім того, величина
що разом із граничними умовами дозволяє одержати додаткову систему рівнянь
звідси треба
де m – індекс моди. Оскільки тангенс – функція періодична з періодом π, те при даній товщині хвилеводу буде існувати безліч рішень (мод) характеристичного рівняння. Підставляючи у хвильове рівняння вираження для EY , одержимо додаткове співвідношення
Тепер для простоти будемо вважати, що середовища не мають втрат.
Прийдемо тим самим до таких рівнянь
Підставивши ці рівняння в характеристичне рівняння, одержимо дисперсійне рівняння для несиметричного хвилеводу:
Висновок
На початку роботи було поставлене завдання вивчення тонкого діелектричного хвилеводу для ТІ поляризації. Були розглянуті рівняння Максвелла, які використовуються для знаходження рівнянь Френеля, і для опису поширення електромагнітної хвилі у хвилеводі. Були отримані вираження для відбивної й пропускної здатності, а також розглянутий окремий випадок геометричної оптики - кут Брюстера. Отримано дисперсійне рівняння, що показує залежність коефіцієнта вповільнення від показника переломлення й товщини хвилеводу. Графіки розраховувалися в програмах Excel і MathCAD.
Список літератури
1. Дияконів В. Mathcad 8/2000: спеціальний довідник. – К., 2007
2. Попов В.П. Основы теории цепей.- М., 1997
3. Електротехнічний довідник // за ред. В.Г. Герасимова. – К., 2006
4. Руководящие указания по релейной защите. Вып. 13В. Релейная защита понижающих трансформаторов и автотрансформаторов 110-500 кВ. Расчеты. М., 1985.
5. Шабад М.А. Расчеты релейной защиты и автоматики распределительных сетей. – Л., 1989