Великолепно согласующаяся с экспериментальными данными теория эффекта Комптона чрезвычайно проста и позволяет, используя лишь законы сохранения импульса и энергии, точно определить зависимость частоты рассеянного фотона от угла рассеяния. Независимость частоты рассеянного излучения от природы рассеивающего тела объясняется элементарно. Действительно, в акте рассеяния участвуют лишь падающие фотоны и электроны, свойства которых совершенно не зависят от конкретной природы вещества, в состав которого они входят.
Теория Комптона – Дебая так просто и изящно объяснила наиболее существенные особенности комптоновского рассеяния, что сразу стала еще одним блестящим доказательством справедливости фотонной теории света.
В качестве еще одного подтверждения фотонной теории можно указать, например, на эффект Рамана, открытый немного позже эффекта Комптона. Эффект Рамана заключается в изменении частоты рассеянного излучения в области видимого света. Важное отличие этого эффекта от эффекта Комптона состоит в том, что в этом случае частота рассеянного света существенно зависит от природы рассеивающего тела. Кроме того, рассеяние сопровождается также и увеличением частоты. Однако интенсивность рассеянного света с большей частотой гораздо слабее интенсивности света, рассеиваемого с уменьшением частоты. Фотонная теория очень хорошо объяснила все характерные особенности этого явления и дала простое объяснение даже преобладанию рассеяния с уменьшением частоты над рассеянием с увеличением частоты, что было совершенно не под силу классическим теориям.
За тридцать лет своего существования гипотеза о дискретности природы света оказалась настолько плодотворной, что в настоящее время уже не остается сомнений в ее достоверности. Она открывает новую существенную сторону физической реальности. Но эта гипотеза встречает на своем пути также трудности и вызывает возражения, возникшие еще во времена первых работ Эйнштейна по квантовой теории света.
Прежде всего, возникает вопрос, как совместить дискретность структуры света с волновой теорией, столь неоспоримо подтвержденной многими точными экспериментами? Как совместить между собой существование единого и неделимого кванта света и явления интерференции? В частности, как показал Лоренц, невозможно определить разрешающую способность оптических инструментов (например, телескопа), исходя из предположения о концентрации световой энергии в фотонах, локализованных в пространстве. А как объяснить с точки зрения фотонной теории те же явления интерференции? Конечно, можно было бы предположить, что явления интерференции связаны с взаимодействием большого числа фотонов, одновременно участвующих в процессе. Но тогда интерференционные явления должны были бы зависеть от интенсивности света и в случае достаточно малой интенсивности, когда в интерференционный прибор попадает одновременно не более одного фотона, вовсе бы отсутствовали бы. Опыт оказал, что какова бы ни была интенсивность падающего света, интерференционная картина остается одной и той же при условии, конечно, что время экспозиции будет достаточно велико. Это указывает на то, что каждый фотон, взятый в отдельности, участвует в явлении интерференции – факт чрезвычайно странный, если считать фотоны локализованными в пространстве.
Другая трудность, которая возникает, если пытаться последовательно придерживаться гипотезы о чисто корпускулярной природе света, состоит в следующем. Сам способ, которым Эйнштейн вводит понятие кванта света, или фотона, опирается на понятие частоты, в свою очередь связанное с представлением о некотором непрерывном периодическом процессе. Чисто же корпускулярные представления об излучении как о совокупности фотонов никак не позволяют определить какую-либо периодичность, частоту. В действительности, частота, фигурирующая в определении кванта, - это частота, заимствованная у волновой теории, которая выводится из явлений дифракции и интерференции. Значит, само определение энергии фотона как произведения частоты на постоянную Планка с чисто корпускулярной точки зрения непоследовательно. Более того, оно как бы устанавливает связь между волновой концепцией света и вновь возродившейся с открытием фотоэффекта корпускулярной концепцией. Однако было бы неправильно думать, что до открытия фотоэффекта последняя не имела под собой никаких оснований.
Явления отражения света от зеркал, прямолинейность его распространения в однородных средах, да и вообще вся геометрическая оптика с ее понятием световых лучей очень естественно укладываются в баллистическую корпускулярную картину. Но теория Френеля, великолепно объяснив все эти баллистические аспекты с чисто волновой точки зрения, привела к тому, что корпускулярная картина оказалась не у дел. Открытие фотоэффекта заставило снова вернуться к представлениям такого рода, хотя, конечно, уже соотношение Эйнштейна между энергией фотона и его частотой показывало, что волновая концепция не отвергается начисто и фотонная теория должна как-то объединить волновые и корпускулярные представления таким образом, чтобы оба аспекта имели определенный физический смысл.
Наконец, следует указать еще на одну тонкость. Согласно классическим представлениям энергия материальной частицы – это величина, имеющая какое-то вполне определенное значение. В теории же излучения никакое излучение нельзя рассматривать как строго монохроматическое, поскольку оно всегда содержит компоненты, частоты которых отличаются друг от друга. Ширина этого спектрального интервала может быть очень мала, но все, же всегда отлична от нуля. Этот факт Планк подчеркивал уже в первых своих работах по теории излучения черного тела. Вследствие этого соотношение Эйнштейна, приравнивающее энергию частицы света, фотона, частоте, соответствующей классической волне, умноженной на
, носит несколько парадоксальный характер, поскольку оно приравнивает одну величину, имеющую вполне определенное значение, к другой, не имеющей, строго говоря, никакого определенного значения. Дальнейшее развитие квантовой механики раскрыло истинный смысл этого противоречия. Итак, можно сказать, что фотонная гипотеза, превосходно объясняющая явления фотоэффекта и комптоновского рассеяния, не дает возможности построить последовательную корпускулярную теорию излучения. Она требует развития более глубокой теории, в которой излучение может обладать и волновым и корпускулярным аспектами, причем связь между ними должна быть установлена так, чтобы выполнялось соотношение Эйнштейна.Де Бройль предположил, что между корпускулярными и волновыми свойствами электрона существует такая же связь, как и между соответствующими характеристиками фотонов. Де Бройль предположил, что для электрона, как и для фотона справедливо выражение:
(2.1) (2.2)Впоследствии оказалось что формулы (2.1) и (2.2) справедливы для любых микрочастиц и систем, состоящих из них.
Поскольку движение частиц неразрывно связано с распространением волны, было бы очень странно, если бы материальные частицы, например электроны, не проявляли интерференционных и дифракционных свойств подобно тому, как это происходит с фотонами и изучением которых занимается физическая оптика. Чтобы выяснить, какие из этих явлений можно реально наблюдать, нужно было, прежде всего, оценить длину волн, связанных с электронами. Формулы волновой механики немедленно дают ответ на этот вопрос: длина волны, связанной с электронами, при обычных условиях всегда очень мала, порядка длины волны рентгеновских лучей. Поэтому можно было надеяться наблюдать у электронов те явления, которые происходят с рентгеновскими лучами. Фундаментальное свойство физики рентгеновских лучей – это дифракция на кристаллах. Необычайно малая длина волны рентгеновских лучей почти исключает возможность использования для наблюдения их дифракции приборов, сделанных руками человека. К счастью, сама природа позаботилась о том, чтобы создать годные для этих целей дифракционные решетки – кристаллы.
Действительно, в кристаллах атомы и молекулы расположены в правильном порядке и образуют трехмерную решетку. Причем оказалось, что расстояние между частицами в кристалле как раз порядка длины волны рентгеновских лучей. Направляя пучок рентгеновских лучей на кристалл, можно получить дифракционную картину, совершенно аналогичную картине дифракции обычного света на трехмерной точечной решетке.
Взяв пучок электронов с заданной кинетической энергией, мы должны были бы наблюдать явление дифракции, такое же, как дифракция рентгеновских лучей. Поскольку структура кристаллов, применяемых в экспериментах, хорошо изучена различными методами, из полученной при дифракции электронов информации можно вычислить длину волны электрона, и, следовательно, подтвердить правильность соотношения.