Смекни!
smekni.com

Электропривод литейного крана по схеме "Преобразователь частоты – асинхронный короткозамкнутый двигатель" (стр. 3 из 7)

Предварительно необходимо рассчитать сопротивление первичной обмотки и сопротивление вторичной обмотки, приведённое к числу витков вторичной.

Диапазон значений скольжения:

.

Уравнение механической характеристики двигателя:

Скорость электродвигателя в функции скольжения:


.

Результаты расчётов:

Таблица 4.1 – механическая характеристика двигателя

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0 15.7 31.4 47.1 62.8 78.5 94.2 110 125.7 141.4 157
387.6 416.4 448.4 483.3 520.2 555.7 582 581.4 518.4 337 0

Однако данное уравнение ошибочно описывает процессы, происходящие при пуске АД. Так, например оно не учитывает увеличение активного сопротивления фазы ротора вследствие эффекта вытеснения тока. Поэтому есть необходимость произвести расчёт механической характеристики по эмпирически выведенной формуле.

Диапазон изменения скольжения тот же, что и в предыдущих вычислениях.

Критическое скольжение:

.

Критический момент:

Пусковой момент:

.

Коэффициент K:

.

Момент электродвигателя:

.

Результаты расчётов:

Таблица 4.2 – МХ по эмпирической формуле

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0 15.7 31.4 47.1 62.8 78.5 94.2 110 125.7 141.4 157
446.6 464.6 486.5 512.1 540.5 568.424 586.9 575.8 496.6 302.8 0

Графики естественных механических характеристик:

Рисунок 4.1 – Графики естественных механических характеристик


5. РАСЧЁТ И ПОСТРОЕНИЕ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ПРИ МАКСИМАЛЬНОМ, СРЕДНЕМ И МИНИМАЛЬНОМ ЗНАЧЕНИЯХ СКОРОСТИ ДВИЖЕНИЯ

При расчёте искусственных характеристик двигателя необходимо воспользоваться условием задания:

,

.

При этом частоты преобразователя, обеспечивающие работу на максимальной скорости при различных моментах, будут также различны

При частотном регулировании жесткость МХ остаётся постоянной:

.

Подобным выражением можно воспользоваться при определении синхронной скорости вращения, соответствующей максимальной скорости при различных моментах:

Минимальный статический момент:

Максимальный статический момент:


Соответствующие данным синхронным скоростям частоты:

Минимальный статический момент:

.

Максимальный статический момент:

.

Сопротивление короткого замыкания:

.

Коэффициенты

и
:

,
.

Относительная частота:

Минимальный статический момент:

.

Максимальный статический момент:


Относительное напряжение на статоре:

Минимальный статический момент:

.

Максимальный статический момент:

При увеличении частоты вверх от номинала необходимо также увеличить и напряжение на статоре, но это не допустимо. Значит, относительное напряжение будет равно 1:

.

Это приведёт к снижению момента. В таком случае работа двигателя будет возможна при выполнении условия:

.

Напряжение на выходе преобразователя:

Минимальный статический момент:

.

Максимальный статический момент:

.

Критическое скольжение:

Минимальный статический момент:

Максимальный статический момент:

Критический момент двигателя:

Минимальный статический момент:

Максимальный статический момент:

Проверка условия:

;

.

Как видно, условие выполняется.

Коэффициент a:

Минимальный статический момент:

.

Максимальный статический момент:

.

Момент рассчитываем по формуле Клосса:

Минимальный статический момент:

.

Максимальный статический момент:

.

Скорость электродвигателя:

Минимальный статический момент:

Минимальный статический момент:


.

Результаты расчётов:

Таблица 5.1 – расчёт ИХ при максимальной частоте при минимальном моменте

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
150.7 135.6 120.6 105.5 90.42 75.35 60.28 45.21 30.14 15.07 0
0 327.4 509.5 578 584.1 561.9 529.1 493.8 459.6 428 399.327

Таблица 5.2 – расчёт ИХ при максимальной частоте при максимальном моменте

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
162.6 146.4 130.1 113.8 97.58 81.32 65.05 48.79 32.53 16.26 0
0 323.7 493.2 547.7 543.9 516.1 480.9 445.3 411.9 381.7 354.8

Аналогичными будут расчёты при построении МХ при минимальной частоте.

Синхронная частота вращения при различных моментах: