Смекни!
smekni.com

Рассеяние волн в задаче о маскировке объектов методом волнового обтекания (стр. 1 из 3)

КУРСОВАЯ РАБОТА

На тему:

"Рассеяние волн в задаче о маскировке объектов методом волнового обтекания"

Минск, 2010 г.

Введение

У людей с давних времён есть желание замаскироваться, а то и вовсе стать невидимым для окружающих. И с недавних пор это может стать возможным с помощью метода волнового обтекания. Основной целью курсовой работы является изучение метода рассеяния волн в задаче о маскировке объектов методом волнового обтекания, рассмотрение основных характеристик и свойств маскирующих покрытий, изучение их классификации. А также, как дополнение, рассмотрение быстрого преобразования Фурье и его применения в задаче о рассеянии. Задача курсовой работы заключается в овладении методом решения задачи о рассеянии и изучении маскирующих оболочек.

Под маскировкой или скрытием методом волнового обтекания следует понимать такое преобразование фронта волны маскирующей оболочкой, что он огибает скрываемый объект. В реальных условиях невозможно добиться идеальной маскировки, но принципиально возможно сведение потерь и рассеяния к пренебрежимо малым для поставленной задачи значением. А в задаче маскировки таких сравнительно небольших объектов, как тело человека, ракет, самолётов, и прочей военной техники, учитывая маловероятность отклика радаров на большое для идеальных моделей, но значительно меньшее, чем у объектов без маскирующих оболочек, рассеяние, при желании распределённое во всех направлениях, делает их скрытие очень перспективной и востребованной задачей. Учитывая характер явления, его преимущественной областью применения является военно-стратегическая.

1. Решение задачи о рассеянии

1.1 Решение задачи о рассеянии в общем случае

В общем случае задача о рассеянии ставится следующим образом. На некоторый объект произвольной формы с диэлектрической проницаемостью

и объемом V падает электромагнитная волна в направлении распространения
и с колебаниями электрического вектора в направлении
(рис. 1.1). Волна движется в пространстве с диэлектрической проницаемостью
. После рассеивания и поглощения результирующая волна имеет направление распространения
и колебания электрического вектора в направлении
.

Для вычисления рассеянных электромагнитных полей и сечения рассеяния необходимо сначала записать общее решение для поля внутри рассеивающего тела, поля рассеянных волн и падающего поля, а затем вычислить неизвестные постоянные коэффициенты (спектральные амплитуды) с помощью граничных условий.

1.2 Решение задачи о рассеянии в общем случае

Решение задачи о рассеянии в общем случае заключается в нахождении сечения рассеяния.

Запишем электрическое поле падающей волны следующим образом:

, (1.2.1)

где

=
– вектор описывающие местоположение относительно базиса (
– волновое число. Рассеянное поле вдали от рассеивателя может быть описано сферической волной:

, (1.2.2)

где r – расстояние от рассматриваемой точки до точки рассеяния,

– амплитуда рассеяния, зависящая от направления рассеянной
и падающей
волн.

Магнитное поле падающей волны вычисляется из уравнений Максвелла и имеет следующий вид:

, (1.2.3)

где η=

есть волновое сопротивление (импеданс).

Вектор Умова-Пойтинга, который определяет поток мощности поля через единицу поверхности, записывается следующим образом:

. (1.2.4)

Рассуждаем так же и для рассеянной волны. Магнитное поле рассеянной волны по определению следующее

, (1.2.5)

а вектор Умова-Пойтинга рассеянной волны

, 1.2.6.

Подставляя выражение (1.2.2) в (1.2.6), получаем

. (1.2.7)

В сферической системе координат возьмём дифференциал телесного угла в направлении рассеяния (рис 1.2)

. (1.2.8)

На расстоянии r, от рассеивающей точки, площадь поверхности ограниченной дифференциалом телесного угла

записывается следующим образом:

. (1.2.9)

Тогда дифференциал рассеянной мощности через площадку

принимает следующий вид:

. (1.2.10)

Дифференциал телесного угла в сферических координатах r, θs, φs

Теперь, подставляя (1.2.7) в (1.2.10) получим следующее выражение для мощности, рассеянной в элемент телесного угла:

. (1.2.11)

Разделив левую и правую части выражения (1.2.11) на вектор Умова-Пойтинга для падающей волны (1.2.4), получим

. (1.2.12)

Размерность последнего соотношения является размерностью площади.

называется дифференциальным сечением рассеяния и обозначается как
.

А интегрирование 1.2.12, в свою очередь, даёт


. (1.2.13)

, (1.2.14)

где

– рассеянная мощность, а
– сечение рассеяния.

. (1.2.15)

1.2 Решение задачи о рассеянии на цилиндре

Решается задача о нахождении полей на таком удалении от точек рассеяния, что фронт распространения волн этих полей можно считать плоскостью. Найдём для этого сперва общее решение, характеризующее бесконечно длинный цилиндр, а затем подставим в решение граничные условия, обобщив его тем самым на цилиндр длинны L.

Пусть поле падающих волн задаётся выражением:

, (1.2.1)

где

(см. рис. 2.1), падающая волна раскладывается в суперпозицию двух поляризаций – горизонтальной линейной и вертикальной линейной, а
и
горизонтальный и вертикальный вектора поляризации.

Падающая волна также может быть представлена в виде векторных цилиндрических волн, т.е. следующим образом:

. (1.2.2)

Цилиндр высоты L, радиуса aи проницаемости

Общее решение будет состоять из выражений для рассеянного поля и поля внутри цилиндра объединённых граничными условиями. Запишем теперь выражения, определяющие рассеянное и внутренне поля с точностью до неизвестных коэффициентов

,
,
,
на оговоренном ранее расстоянии от точки рассеяния

, (1.2.3)

, (1.2.4)

где

,
– символ, с помощью которого обозначается конфигурация функций Бесселя и Ханкеля для величин, перед которыми он стоит, а
– коэффициенты, получаемые с использованием преобразования Фурье от выражения (1.2.1)