Смекни!
smekni.com

Трехфазные электрические цепи, электрические машины, измерения электрической энергии, электрического освещения, выпрямления переменного тока (стр. 7 из 8)

При нажатой правой кнопке следует пользоваться шкалой 0-100, а при нажатой левой - шкалой 0-30. Показания прибора в делениях по соответствующей шкале умножается на коэффициент ослабления, который зависит от применяемой насадки, имеющей на своей поверхности маркировку КМ, КP и КТ и равняется соответственно 10, 100, 1000. Например, на фотоэлементе установлена насадка КP, нажата левая кнопка, стрелка показывает 10 делений по шкале 0-30. Измеряемая освещенность равна 10&100= 1000 лк.

4. Световые и электрические характеристики источников света.

4.1 Номинальное напряжение - это напряжение, на которое лампа рассчитана для работы. Лампы накаливания общего назначения выпускаются на следующие диапазоны напряжений: 215...225; 220...235; 230...240; 235...245 В. Для увеличения срока службы следует приобретать лампы с с большим номинальным напряжением. Люминесцентные лампы, в основном, рассчитаны на напряжение сети 220 В, причем на самой лампе, в зависимости от мощности, падение напряжения составляет 102...110 В, остальная часть напряжения падает на дросселе.

4.2 Электрическая мощность лампы указывается как средняя величина для номинального значения напряжения. Промышленность выпускает лампы накаливания общего назначения мощностью от 15 до 1000 Вт.д.иапазон мощностей люминесцентных ламп меньше и составляет, в основном, 15...80 Вт.

4.3 Световой поток характеризует мощность видимого излучения, оцениваемого глазом человека, измеряется в люменах (лм). Световой поток можно выразить через освещенность, измеренную люксметром:

Ф = 4

Еl2

где Е - освещенность, лк;

l - расстояние между лампой и фотоэлементом, м;

4.4 Световая отдача характеризует экономичность источника света и определяется отношением излучаемого светового потока к мощности лампы:

лм/Вт

где P - мощность лампы, Вт.

4.5 Световой КПД. Многочисленными измерениями установлено соотношение между мощностью и световым потоком - ваттом и люменом: 1 Вт=683 лм при однородном излучении с длиной волны, равной 555 нм. Отсюда световой КПД

4.6 Срок службы. Средний срок службы лампы накаливания общего назначения составляет 1000 часов. На срок службы значительно влияет колебание напряжения. Зависимость имеет вид:

где

, UН - соответственно срок службы и напряжение по паспортным данным. Срок службы люминесцентных ламп составляет 5000...10000 часов, причем срок службы уменьшается как при увеличении, так и при уменьшении напряжения относительно номинального.

Таблица 1.

Измерено Вычислено
Напря-жение,U, В Ток,I, А МощностьР, Вт Осве-щенностьЕ, лк Сопротив-ление,R, Ом Световой поток,F, лм Световая отдача,Н, лм/Вт Световой КПД,
%

Таблица 2.

Измерено Вычислено
Напряже-ние ТокI, A Мощ-ностьР, Вт ОсвещенностьЕ, лк Сопр.ЛампыREL, Ом Мощн.ЛампыРEL, Вт Мощн.Дросс.РL, Вт Свет.потокФ, лм Светов.отдачаН, лм/Вт Свет.КПД
%
UСЕТ UEL

Сопротивление лампы определяется по закону Ома:

Ом

Активная мощность, потребляемая из сети, расходуется в дросселе и в лампе. Мощность лампы:

. Ки, Вт

где: Ки - коэффициент искажений (Ки =0,6...0,7)

Активную мощность дросселя можно определить как разность показаний ваттметра и мощности лампы

Вт

Содержание ОТЧЕТА

1. Название, цель работы.

2. Схемы, таблицы.

3. Графики зависимости H = f (P) для лампы накаливания и люминесцентной лампы в общих координатных осях.

4. Аналогично п.3 график

= f (P).

5. Выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. С какой целью лампы накаливания заполняются инертным газом?

2. Чем объясняется повышенный срок службы галогенных ламп по сравнению с обычными лампами накаливания?

3. Как увеличить срок службы ламп накаливания?

4. Назначение дросселя и стартера в схеме зажигания люминесцентной лампы.

5. От чего зависит цветность излучения люминесцентной лампы?

6. Преимущества и недостатки люминесцентных ламп.

7. После зажигания люминесцентной лампы отключили стартер. Лампа будет работать или погаснет?

8. Что такое стробоскопический эффект и как уменьшить его влияние?

9. Почему для искусственного досвечивания растений применяют люминесцентные лампы и практически не используют лампы накаливания?

Литература

1. Прищеп Л.Г. Учебник сельского электрика. - М.: Агропромиздат, 1986,с.245 - 368.

Методические указания к лабораторной работе № 12

"Исследование полупроводниковых выпрямителей переменного тока"

Цель работы: Изучить принцип, основные схемы выпрямления переменного тока и способы сглаживания пульсаций выходного напряжения.

Теоретические сведения


Выпрямление переменного тока с помощью полупроводниковых диодов - один из основных процессов в электронике. Полупроводниковый диод представляет собой прибор с одним p-n переходом и двумя внешними выводами от областей кристалла с различными типами электропроводности (рис.1).

Именно p-n переход является основой любого полупроводникового диода и определяет его свойства, технические характеристики и параметры.

Если к катоду присоединить "минус" источника питания, а к аноду - "плюс", то электроны из области n будут стремиться достичь анода, а "дырки" из области р будут притягиваться "минусом" катода. Следовательно, через p-n переход будет протекать ток, и диод будет открыт. Если изменить полярность, приложенную к выводам диода, то электроны из области n будут притягиваться "плюсом" катода, а "дырки" области р - "минусом" анода, и ток через p-n переход протекать не будет, следовательно, диод будет закрыт.

Таким образом, диод - это прибор, обладающий односторонней проводимостью, т.е. Через диод ток может протекать только в одном направлении. Существуют различные схемы выпрямителей переменного тока. Простейшей является схема выпрямителя с одним диодом (рис.2а).

В данном случае через нагрузку RН протекает ток только одной полуволны (рис.2 б). Поэтому среднее значение выпрямленного напряжения значительно меньше входного и составляет 0,45 от действующего напряжения на входе выпрямителя

U0 = 0,45Uвх

Недостатком данной схемы является очень высокий коэффициент пульсаций:

U~1

КП = - --

Ud

где U~1- амплитуда переменной составляющей основной гармонии выпрямленного напряжения;

Ud - среднее значение выпрямленного напряжения.

Коэффициент пульсациипоказывает, насколько выпрямленное напряжение отличается от прямой линии. Для приведенной выше схемы КП=1,57.

С целью уменьшения пульсаций чаще всего применяют мостовую схему с четырьмя диодами (рис.3а):

В данном случае через нагрузку протекает ток обоих полупериодов. Так, при положительной полуволне входного напряжения ток протекает по следующей цепочке: клемма 1®VD2®RH®VD3®клемма 2; при отрицательной полуволне (т.е. когда к первой клемме подводится "минус", а ко второй "плюс") ток протекает по следующей цепочке: клемма 2®VD4®RH®VD1®клемма 1. Следовательно, при обеих полуволнах входного напряжения через нагрузку протекает ток в одном направлении (рис.3б). При этом среднее значение выпрямленного напряжения составляет 0,9 от действующего входного напряжения U0=0,9Uвх.

Коэффициент пульсации выпрямленного напряжения значительно меньше, чем у предыдущей схемы (рис.2а): КП=0,67.

Аналогичный коэффициент пульсации дает схема с двумя диодами, но в этом случае еще необходим трансформатор с нейтральной точкой, поэтому такая схема применяется реже, в данной работе ее рассматривать не будем.

Для выпрямления трехфазного тока самой распространенной является мостовая схема (рис.4а).

В данной схеме одновременно от каждой фазы ток протекает по двум цепочкам (от точки с большим потенциалом к точке с меньшим потенциалом):

Фаза A®VD1®RH®VD5®фаза В

Фаза A®VD1®RH®VD6®фаза С

Фаза В®VD2®RH®VD6®фаза С

Фаза В®VD2®RH®VD4®фаза А

Фаза С®VD3®RH®VD4®фаза А

Фаза С®VD3®RH®VD5®фаза В