В пределе малых концентраций множитель
Ивановым А.О. и Кузнецовой О.Б. получено уточненное выражение для восприимчивости [], сходное с формулой (1), но содержащее в правой части слагаемые порядка
Пшеничниковым А.Ф. и Лебедевым А.В. введены поправки в разложение (1) (исскуственным образом) на агрегирование частиц
Сравнение формул, отражающих рассмотренные модели с экспериментальными данными проводилось в []. Анализ результатов этой работы позволяет сделать вывод о необходимости осторожности использования предложенных разложений, так как каждое из них удовлетворительно согласуется с результатами экспериментов только в определенных интервалах температур и концентраций дисперсной фазы. Следует также заметить, что все обсужденные модели разработаны для монодисперсной системы, в случае же полидисперсной среды, их применение становится затруднительным. Это связано с тем, что в этом случае определение параметра
Глава 2. Структурная организация магнитных жидкостей и обусловленные ею электро- и магнитооптические эффекты
§1. Структурные образования в магнитных жидкостях
Наличие вокруг дисперсных частиц защитных оболочек, препятствующих необратимой коагуляции не исключает возможности объединения частиц в агрегаты, когда расстояние между ними соответствует второму минимуму энергии взаимодействия при сохранении барьера отталкивания, а также в случае малой глубины первого минимума. Действительно, микроскопические наблюдения показывают наличие даже в наиболее устойчивых к агрегированию МЖ типа магнетит в керосине с олеиновой кислотой структурных образований из исперсных частиц.
Де Жен и Пинкус [33 МД] рассмотрели коллоид, состоящий из идентичных ферромагнитных частиц, взвешенных в пассивной по отношению к магнитному полю жидкости. Для характеристики дипольного взаимодействия, приводящего к агрегированию использован параметр, называемый константой спаривания
где
Термодинамическая модель магнитной жидкости, показывающая, что при определенных значениях концентрации, температуры и напряженности магнитного поля появляется возможность расслоения МЖ на высоко- и слабоконцентрированные фазы, построена в работах А.О. Цеберса [77,78].
При этом, как, по-видимому, было впервые указано в [65], агрегаты могут быть разделены на два типа микрокапельные, имеющие упругую оболочку, и квазитвердые, иногда хлопьевидные, реже - напоминающие кристаллические образования.
§2. Магнитная жидкость с микрокапельной структурой
Наиболее распространенными в жидкостях на основе керосина являются микрокапельные агрегаты. По-видимому, образование микрокапельной структуры является уникальным процессом, характерным только для дисперсных систем с магни-тодипольными частицами. Попытка теоретического обоснования физического механизма этого процесса неоднократно предпринималась в ряде работ [38,76,82,138,139], среди которых следует отметить работу А.О. Цеберса [138], где в основу положено явление вытеснительной флокуляции. Вытеснительная флокуляция может иметь место, если дисперсные частицы находятся в растворе достаточно крупных молекул [140]. В этом случае, при сближении дисперсных частиц до расстояний, меньших диаметра растворенных клубков, последние не в состоянии заполнить зазор между частицами, который играет роль своеобразной мембраны, и осмотическое давление раствора создает силу, приводящую к притяжению частиц. При этом, при наличии магнитных межчастичных взаимодействий значение критической концентрации растворенных клубков, соответствующее началу агрегирования уменьшается. Действительно, возникновение микрокпельных агрегатов наблюдается в магнитных жидкостях при разбавлении их чистым ПАВ или его раствором в дисперсионной среде [134] . Вместе с тем, является установленным фактом и возможность возникновения микрокапельной структуры при разбавлении МЖ чистым растворителем. По-видимому, причиной этого являются процессы мицелообразования ПАВ в результате добавления керосина в магнитную жидкость. Как было указано в Гл. 1, именно с возникновением микрокапельной структуры при изменении концентрации магнитной жидкости на основе керосина путем ее последовательного разбавления связаны особенности концентрационной зависимости ее магнитной восприимчивости. В этом случае возникновение микрокапель было рассмотрено в рамках фазового перехода, так как налицо возникновение новой, более концентрированной фазы с наличием межфазной поверхности. Следует отметить, что концентрация частиц в микрокаплях может быть значительно выше, чем в омывающей их среде, а магнитная проницаемость микрокапель достигает нескольких десятков единиц.
Для исследования особенностей физических свойств магнитных жидкостей, обусловленных наличием микрокапельных агрегатов в [141] была разработана методика получения в МЖ на основе керосина хорошо развитой микрокапельной структуры. Это достигалось путем смешивания МЖ с минеральным маслом при различном соотношении их объемов. Смесь подогревалась до температуры 315 - 320 К и перемешивалась в течении 15-20 минут с помощью электромеханической мешалки. В результате этого была получена жидкость, содержащая множество мелких (2-7 мкм) капельных агрегатов, имеющих более высокое содержание магнетита, чем омывающая их среда. Такая магнитная жидкость может быть идентифицирована как магнитная эмульсия, уникальность которой состоит в том, что и эмульгированные капли и омывающая их среда одинаковы по природе и отличаются лишь плотностью. С другой стороны, достаточно высокое объемное содержание микрокапельных агрегатов в полученной таким способом среде приводит к особенностям оптических и магнитных свойств, обусловленных поведением микрокапель в магнитных и электрических полях. Подобные эффекты в той или иной мере могут наблюдаться и в магнитных жидкостях, в которых возможно самопроизвольное возникновение микрокапель под воздействием различных факторов.