Однако к настоящему времени исследованиями в области электродинамики, квантовой механики, сверхпроводимости достоверно установлено, что в фундаментальных уравнениях должны фигурировать не электромагнитные поля, а именно их потенциалы. В частности, эффекты Ааронова-Бома, Джозефсона, Мейснера реализуются в поле магнитной компоненты векторного потенциала [4], проявляющего себя тем самым вполне наблюдаемой физической величиной. Известно предложение о применении указанного поля векторного потенциала в технологиях обработки разного рода материалов [5]. Отметим также сообщение [6], где на основе формального использования представлений об электромагнитном векторном потенциале металлического проводника с током установлено, что в проводник при электропроводности вместе с потоком электромагнитной энергии (вектора Пойнтинга) поступают потоки чисто электрической и чисто магнитной энергии, момента электромагнитного импульса. Таким образом, имеем серьезную, необходимо требующую разрешения проблему, в которой надо должным образом проанализировать известные либо вскрыть новые реалии в физическом содержании уравнений Максвелла, в частности, понять роль и место векторных потенциалов в явлениях электромагнетизма. Покажем, как это можно сделать!
Поставленная задача и проведенный в этом направлении анализ показал, что исходные соотношения первичной взаимосвязи электромагнитного поля с компонентами
(a)
(c)
Здесь соотношение (4a) для магнитной компоненты векторного потенциала
Как видим, полученные соотношения являются основой для интерпретации физического смысла поля электромагнитного векторного потенциала (см. работу [7]), выяснения его роли и места в явлениях электромагнетизма. Однако самое главное и конструктивно перспективное в них то, что они представляют собой логически связанную систему дифференциальных уравнений, описывающих свойства необычного вихревого векторного поля, состоящего их четырех полевых векторных компонент
Объективность существования указанного единого поляоднозначно и убедительно иллюстрируется основным фундаментальным следствием из соотношений (4), которое состоит в том, что подстановки (4c) в (4b) и (4d) в (4a) приводят к системе новых электродинамических уравненийдля поля электромагнитного векторного потенциала с электрической
(a) rot
(c) rot
Чисто вихревой характер компонент
Однако вернемся к соотношениям (4) единого электродинамического поля. Подстановки соотношения (4с) в продифференцированное по времени соотношение (4a) и аналогично (4d) в (4b) дают систему электродинамических уравнений электромагнитного поля (1) при
Применение операции ротора к (4c) и подстановка в него (4a) с учетом (4d) преобразует систему (4) в еще одну систему теперь уже уравнений электрического поля с компонентами напряженности
(a) rot
(c) rot