где
Здесь
Наряду с системой (4) рассматривается соответствующая линеаризованная подсистема
(5)
аналитическое решение которой, удовлетворяющее соответствующим краевым и начальным условиям, представляется суперпозицией нормальных волн
где
(6)
где
(7)
Например
где
Очевидно, что собственные числа оператора
В первом приближении получаются линейные уравнения для нахождения нормализующего преобразования:
Всякой полиномиальной компоненте
в то время как
Аналогично, во втором приближении разложения решения по
собственные значения оператора
Таким образом, если хотя бы одно собственное значение оператора
В теории нормальных форм существует основная теорема Пуанкаре, накладывающая одновременно весьма сильные условия на спектральные параметры системы и на коэффициенты нормализующего преобразования, для того чтобы две подходящие различные системы обыкновенных дифференциальных уравнений оказались аналитически эквивалентными. Во множестве задач о колебаниях нелинейных механических систем условия теоремы Пуанкаре, как правило, не выполняются. Например, основные типы резонансов второго порядка ассоциируются с трехволновыми резонансными процессами, когда
Наиболее важные случаи резонансов третьего порядка следующие: четырехволновые резонансные процессы, при выполнении условий синхронизма:
Во всех приведенных примерах резонансов второго и третьего порядков в общем случае наблюдается ярко выраженная амплитудная модуляция, глубина которой растет, когда фазовая расстройка стремится к нулю. Волны, фазы которых удовлетворяют условиям фазового синхронизма, формируют так называемые резонансные ансамбли.
Наконец, во втором нелинейном приближении всегда присутствуют так называемые нерезонансные взаимодействия, когда условия фазового синхронизма вырождаются в следующие “тривиальные” случаи: кросс-взаимодействия пары волн, при
Нерезонансные взаимодействия в основном характеризуются только лишь фазовой модуляцией волн.