Такую систему удобно построить в виде набора самостоятельных модулей (модульная концепция), в этом случае появляется возможность создания системы накопления любой конфигурации. В таких системах компьютер может использоваться только для хранения спектрометрических данных на энергонезависимых носителях и выдачи команд управления для микроконтроллера. Связь с удалённым компьютером может быть организована по последовательному каналу передачи данных (RS-232, RS-485 и др.).
Принцип модуляции и трансформации энергетического спектра резонансного излучения в нескольких точках схемы эксперимента достигается введением нескольких механически не связанных, но электрически синхронизованных модуляторов и регистрацией спектров в одной или нескольких точках этойсхемы [3].
Использование различных гамма-оптических схем многомерной мессбауэровской спектрометрии или нескольких каналов регистрации в пределах одной схемы даёт возможность получать систему мессбауэровских спектров от одного исследуемого образца.
Последовательное снятие нескольких спектров, в сложных гамма-оптических схемах, приводит к значительному увеличению времени проведения эксперимента.
Таким образом, в многомерной мессбауэровской спектрометрии в целях поднятия эффективности экспериментов существует необходимость создания системы накопления с возможностью одновременного сбора данных от нескольких синхронизованных трактов регистрации (рис.2.2г).
Свойства многомерности и многоканальности должны существовать одновременно, т.е. конструкция многоканальной системы накопления должна удовлетворять требованиям многомерных задач эксперимента.
2.3.Применение микроконтроллеров
Микроконтроллеры в системах накопления применяются, как правило, в качестве промежуточных уровней накопления, с дополнительными функциями управления.
Несмотря на непрерывное развитие и появление всё новых 16- и 32-разрядных микроконтроллеров и микропроцессоров, наибольшая доля мирового микропроцессорного рынка остаётся за 8-разрядными устройствами. Среди всех 8-разрядных микроконтроллеров семейство 8051 является несомненным лидером по количеству разновидностей числу компаний выпускающих его модификации (на сегодняшний день их существует более 200) [5].
Основные элементы базовой архитектуры MSC-51:
- 8-разрядное арифметико-логическое устройство на основе аккумуляторной архитектуры;
- 4 банка регистров, по 8 в каждом;
- встроенная память программ 4 Кбайт;
- внутреннее ОЗУ объёмом 128 байт;
- булевый процессор;
- два 16-разрядных таймера (счётчика);
- контроллер последовательного канала передачи данных;
- контроллер обработки прерываний с 2 уровнями приоритетов;
- четыре 8-разрядных порта ввода-вывода, два из которых используются в качестве шины адреса/данных для доступа к внешней памяти программ и данных [5].
Основными направлениями развития являются: увеличение быстродействия (повышение тактовой частоты и переработка архитектуры ядра), снижение напряжения питания и потребления, увеличение объёма ОЗУ и FLASH-памяти на кристалле с возможностью внутрисхемного программирования, введение в состав периферии микроконтроллера CAN- и USB-интерфейсов. Микроконтроллеры с каналом SPI обеспечивают возможность внутрисхемного программирования FLASH-памяти.
Таким образом, параметры прелагаемых сегодня на рынке клонов микроконтроллера семейства MSC-51 существенно отличают их от базовой конфигурации. Максимальная тактовая частота кристаллов достигает 40 МГц, объём памяти программ 16 Кбайт, оперативной памяти – 1024 байт и более [5].
Полная аппаратная и программная совместимость многих выпускаемых микроконтроллеров 51-й серии позволяет проводить модернизацию устройств на их основе простой заменой кристалла другим с более подходящими характеристиками.
Универсальная многоканальная система накопления должна иметь возможность быстрой и лёгкой модернизации и конфигурирования для любых экспериментальных задач. Таким требованиям будет удовлетворять система, построенная по модульному принципу.
Перевод классической структуры мессбауэровского спектрометра на базу современных стандартов построения электронно-модульных систем заставляет обратить внимание на возможность использования микро-PC.
Принцип микро-PC подразумевает использование малогабаритных высокопроизводительных процессорных плат и встраиваемых модулей других устройств с большой степенью надёжности. Это делаетмикро-PC незаменимым для применения в условиях требующих безотказной работы систем управления различными процессами как в промышленности, так и в сфере научных исследований.
С позиции мессбауэровской спектрометрии главным фактором в пользу применения микро-PC является большое время проведения эксперимента (до нескольких суток, а то и недель) когда потеря данных вследствие сбоя системы управления заставляет возвращаться к моменту последнего сохранения данных. В таких условиях необходимо постоянное присутствие лаборанта-оператора. Кроме того, повтор накопления влечёт затягивание эксперимента и дальнейший сбой графика анализа образцов в лаборатории, что неприемлемо при использовании дорогостоящих короткоживущих изотопов. Другими словами необходимо добиться максимальной надёжности работы системы при минимальном участии оператора. Необходимо также иметь возможность создания модульной системы с достаточным потенциалом для наращивания и усовершенствования спектрометра, например в целях построения многоканальных систем с несколькими трактами регистрации.
Архитектура IBM РС и лежащая в ее основе шина ISA являются в настоящее время безусловным стандартом в промышленности. Изделия MicroPC представляют собой идеальное сочетание полной (в том числе и конструктивной) совместимости с этой шиной и малого размера плат, обеспечивающего высокие механические характеристики системы и легкое встраивание изделий MicroPC в любое оборудование. Почти всю разработку и отладку программного обеспечения можно производить на обычном персональном компьютере, установив в него платы ввода вывода MicroPC, а затем переносить готовое программное обеспечение в контроллер, где в ПЗУ уже находится ядро операционной системы DOS 6.22. При этом можно использовать практически любое программное обеспечение и средства разработки (например MS-DOS, Microsoft Windows NT/95/98, QNX, Linux и др.), работающие на стандартной IBM PC платформе, или специальные инструментальные пакеты и библиотеки
В качестве микропроцессоров используются микросхемы фирм Intel (i80286, i80386, i80486, IntelPentium), AMD (am5x86) и др.
Все платы вставляются в крейт к системной магистрали ISA. Крейт содержит блок питания. Наличие шины ISA простота и удобства её протоколов позволяют разрабатывать необходимые модули для нужд эксперимента. В этом случае весь электронный блок мессбауэровского спектрометра (система регистрации и система управления доплеровской модуляции) может быть реализован в виде плат расширения. Модульность позволяет свободно конфигурировать систему под определённую задачу, что значительно расширяет экспериментальные возможности (рис.2.3).
Стоит отметить что, применение микро-PC даёт возможность отказаться от использования лабораторного персонального компьютера непосредственно в сборе данных. В этом случае ему может быть отведена роль файл-сервера.
Все элементы на стандартных платах микро-PC выполнены по КМОП-технологии и имеют низкую потребляемую мощность. Таким образом, платы MicroPC не требуют принудительного воздушного охлаждения. Для питания необходим единственный источник напряжения 5 В.
2.5 Разработка устройств сопряжения для магистрали ISA
Магистраль ISA была разработана специально для персональных компьютеров типа IBMPCAT (начиная с процессора i80286) и относится к демультиплексированным (то есть имеющим раздельные шины данных и адреса) 16-разрядным системным магистралям среднего быстродействия [6]. Обмен осуществляется 8- или 16-разрядными данными. На магистрали реализован раздельный доступ к памяти компьютера и к устройствам ввода-вывода (для этого имеются специальные сигналы). Максимальный объём адресуемой памяти составляет 16 Мбайт (24 адресные линии). Максимальное адресное пространство для устройств ввода-вывода – 64 Кбайт (16 адресных линий), хотя практически все выпускаемые платы расширения используют только 10 адресных линий (1 Кбайт). Магистраль поддерживает регенерацию динамической памяти, радиальные прерывания и прямой доступ к памяти. Допускается также захват магистрали.
Разъём магистрали ISA разделён на две части, что позволяет уменьшать размеры 8-разрядных плат расширения. Назначение контактов разъёма ISA в виде таблицы представлено в ПРИЛОЖЕНИИ 1.
В режиме программного обмена информацией на магистрали ISA выполняется четыре типа циклов:
- цикл записи в память;
- цикл чтения из памяти;
- цикл записи в устройство ввода-вывода
- цикл чтения из устройства ввода-вывода.
Циклы различаются используемыми сигналами и протоколами обмена, поэтому при проектировании аппаратуры для сопряжения с ISA необходимо учитывать временные диаграммы используемых циклов обмена. Другими словами должна быть реализована информационная совместимость.
Помимо циклов программного обмена на магистрали ISA могут выполняться также циклы прямого доступа к памяти. Так как на магистрали имеются раздельные стробы чтения и записи для устройств ввода-вывода и для памяти, пересылка данных в режиме ПДП производится за один машинный цикл. То есть если данные необходимо переслать из устройства ввода-вывода в память, то одновременно производится чтение данных из устройства ввода-вывода (по сигналу –IOR) и их запись в память (по сигналу –SMEMW).