Смекни!
smekni.com

Методи розділення та очистки речовин (стр. 4 из 5)

Повторюючи такий процес конденсації і дистиляції, можна врешті-решт досягти того, що пара, що виділяється, буде практично чистим компонентом В. Таким чином, проведений розгляд показує що в системах цього типу будь-яку подвійну суміш можна розділити шляхом дистиляції на чисті компоненти.

У системах же другого або третього типів розділення розчинів на чисті компоненти таким шляхом неможливе. Дійсно, провівши аналогічний розгляд процесу дистиляції системи що належить до другого або третього типу, можна показати, що ці системи розділяються на один з чотирьох чистих компонентів і відповідний азеотроп.

Азеотропні розчини зустрічаються в багатьох практично важливих системах: хлористий водень - вода, азотна кислота - вода, етиловий спирт - вода сірковуглець - ацетон і ін.

Для кількісної характеристики процесів розділення при дистиляції користуються коефіцієнтом розподілу

,

Де

і N – мольні долі компонентів в парі і розчині відповідно.

Для двохкомпонентної системи

;

Оцінку ефективності перерозподілу основного компонента і домішки між паровою і рідкою фазами проводять також за допомогою коефіцієнта розділення

.

Для ідеальних розчинів коефіцієнт розділення не залежить від складу і може бути представлений як

– коефіцієнт відносної летючості. В випадку реальних розчинів коефіцієнт розділення (відносної летючості) має вигляд

,

Де

і
– коефіцієнти активності компонент А і В і визначаються із співвідношення
.

2.5 Очищення речовин за допомогою хімічних транспортних реакцій

Хімічними транспортними реакціями (реакціями переносу) називають оборотні гетерогенні реакції за участю газової фази, що приводять до утворення проміжних газоподібних продуктів, за допомогою яких можна здійснити транспорт (перенесення) речовини між двома реакційними зонами з різним тиском і температурами. Зазвичай для здійснення транспортних реакції використовують системи з різницею температур.

У ряді випадків вживання методів сублімації і дистиляції з метою глибокого розділення або очищення напівпровідникових і діелектричних матеріалів виявляється неефективним унаслідок недостатньої пружності їх пари при прийнятних технологічних температурах. Ефективність процесів в цьому випадку можна істотно підвищити, переводячи основну речовину в хімічну сполуку, більш летку, ніж домішки або інші компоненти. Це дає можливість при подальшому розкладанні легколетучого з'єднання отримати очищений продукт, причому зазвичай значно чистіший чим після сублімації або дистиляції, якщо їх і можна здійснити. Як приклад розглянемо перенесення кремнію у вигляді дигалогеніда.

Обробка кремнію тетрахлоридом при температурі

=1300 °С приводить до утворення проміжного газоподібного з'єднання
, тобто


яке переноситься в холодний кінець реактора, де при температурі

=1100°с виділяється кремній по реакції

Приведені реакції є оборотними і можуть бути записані як,

Таким чином, окрім тієї речовини, що піддається очищенню в транспортній реакції обов'язково бере участь спеціальний реагент (у наведеному прикладі тетрахлорид кремнію), а інколи інертний газ, потоком якого переносять реагент і проміжний газоподібний продукт.

Рівняння транспортної реакції в загальному вигляді може бути представлене так:

де А - речовина, що очищається, яка в умовах досліду може бути в твердій або рідкій фазі; В - газоподібний реагент, створюючий з компонентом А газоподібне проміжне з'єднання С.

Напрям протікання цієї реакції на практиці, як правило, задають різницею температур між зонами в реакційному об'ємі. Результатом цього є перегонка або транспорт речовини, що очищається, з однієї частини апарату в іншу за допомогою хімічної реакції.

За зовнішніми ознакам хімічні транспортні реакції нагадують процеси сублімації і дистиляції. Принципово ж вони відрізняються тим, що перенесення речовини тут здійснюється не за рахунок транспорту власної пари, а за рахунок пари більш летких проміжних з'єднань. В той же час при перенесенні наприклад, бінарного або складнішого з'єднання лише один з його компонентів може переноситися за рахунок оборотної газотранспортної реакції, інші ж компоненти можуть переноситися у вільному стані.

Крім того, якщо при звичайній дистиляції (або сублімації) речовина завжди переноситься з гарячішої в холоднішу зону, то шляхом хімічних транспортних реакцій перенесення може здійснюватися також і з низькотемпературної зони у високотемпературну.

Оскільки процес перенесення речовини, що очищається, складається з трьох послідовних етапів: гетерогенної реакції газоподібного реагенту з речовиною джерела, переміщення газоподібних з'єднань від джерела до зони осадження і гетерогенної реакції, в результаті якої виділяється переносима речовина — швидкість масопереносу може бути обмежена будь-яким з них. У більшості практичних випадків швидкість масопереносу газотранспортними реакціями лімітується процесами переміщення газу між зонами реакцій.

2.6 Інші процеси розділення і очищення речовин

Окрім основних процесів розділення і очищення напівпровідникових і діелектричних матеріалів і їх компонентів, що розглянули вище, перспективними стосовно завдання глибокого очищення речовин є і інші процеси розділення засновані на відмінності певних фізико-хімічних властивостей речовин, що розділяються: електрохімічні процеси розділення в силових полях — відцентровому, електричному, магнітному, розділення дифузією, термодифузією і ін.

Розглянемо коротко деякі з цих процесів. Електрохімічні процеси розділення і очищення. Із всього різноманіття цих методів основними для очищення напівпровідників, діелектриків і їх компонентів є очищення електролізом, анодним розчиненням і електродіалізом.

Електрохімічні методи очистки здійснюються шляхом проведення окисно-відновних процесів на електродах в електроліті при проходженні через останній струму. Вихідний матеріал завантажують в вигляді анода, який в процесі електролізу розчиняється і очищений матеріал збирається на катоді. На поверхні анода протікає реакція окислення

з переходом іона речовини в розчин і електрона е по зовнішній ділянці кола на катод; на катоді йде реакція відновлення
, в результаті якої проходить виділення речовини А на катоді.

Описані процеси дозволяють добитися глибокого ступеня очищення речовин, проте для успішного протікання процесу необхідно звести до мінімуму можливі побічні процеси, особливо зв'язані за участю домішок. Необхідно щоб при електролізі осадження домішок з основним компонентом на катоді було зведене до мінімуму. При цьому домішки або накопичуватимуться в електроліті, або безперервно видалятимуться з нього. Чистота катодного осаду залежить від багатьох чинників головними з яких є рівноважні електродні потенціали основного компоненту і домішок, хімічний склад електроліту, щільність струму, що протікає через нього, форма входження домішки в речовину, що очищається (твердий розчин, утворення хімічних сполук з основним компонентом утворення механічної суміші з основним компонентом), структура катодного осаду (амфорна, полікристалічна, монокристалічна), кінетика електрохімічної реакції.

У ряді випадків більшої ефективності очищення вдається досягти при анодному розчиненні (анодному рафінуванні). Речовина, що в цьому випадку очищається, також використовується як анод, а електроліз приводить до переходу домішок з анода в електроліт і до скупчення їх надалі на катоді. Прикладами такого процесу можуть служити очищення галію від цинку в кислому електроліті, очищення алюмінію і магнію від кремнію, заліза, міді і цинку, а також електролітичне рафінування олова, свинцю, берилія, титану, цирконію, ніобію і ін.

Селективність витягання катіонів з електроліту можна істотно підвищити використовуючи ртутний катод (амальгамовий електрохімічний процес). Особливість амальгамової електрохімії полягає не лише в селективному переході іонів елементів з розчину в ртутний електрод але і в селективному витяганні тих же елементів з отриманого амальгамового електроду. Селективність цих процесів зв'язана, з одного боку, з відмінністю у величинах електродних потенціалів при виділенні елементів на ртутному катоді і при анодному окисленні амальгами, а з іншого боку з різною розчинністю елементів в ртуті. Вживання амальгамового електрохімічного процесу як методу очищення доцільно лише для таких з'єднань, елементи яких добре розтворяються (>0,4 %) в ртуті. Вживання рідких амальгамових анодів і катодів збільшує ефективність видалення домішок з основного металу, що піддається очищенню. Зокрема, амальгамове рафінування індію дозволяє отримати чистіші з'єднання цього металу, особливо за складом таких домішок, як Al, Fe, Cu, Pb, Bi, Si, Mn, ніж зонна плавка індію.