Реактивное сопротивление балласта зависит от частоты и определяется формулами:
Цепь, состоящая из последовательно включенных дросселя и конденсатора, характеризуется некоторой частотой
Если обозначить
Используя формулы (26), (27) и (30), составим уравнение мгновенных значений тока, имея в виду что
Определим из (31)
Действующее значение основной гармоники тока определяется из (31) и (32) обычным интегрированием:
Для реальных схем, в которых используются балласты с 1<h<2, доля высших гармонических составляющих в токе лампы мала и можно без особых погрешностей считать, что
Видно, что характеристики схемы с емкостно-индукционным балластом зависят от величины h и при некоторых ее значениях в поведении характеристик обнаруживаются особые эффекты. Если h= 1 наблюдается резонанс на основной частоте, и величина тока резко возрастает, причем при отсутствии активного сопротивления в последовательной цепи, величина
Одной из важных особенностей реальной схемы с индуктивно-емкостным балластом, в которой соотношение между L и С соответствует 1< h< 2, является слабая зависимость величины тока от напряжения на лампе. Наиболее просто можно оценить эту зависимость, сравнивая
Искомое отношение
Результаты расчетов по формуле (36) показывают (рис. 8, г), что для h= 1,66 имеем
На рис. 8, д показаны зависимости относительного возрастания мощности (тока) при увеличении сетевого напряжения на 10% в функции
Другим важным свойством индуктивно-емкостного балласта является то, что эта схема обеспечивает надежное перезажигание разряда. В каждый полупериод, в момент изменения полярности на лампе (
или, используя соотношение (32) и (34), получаем:
Видно, что напряжение на балласте в момент перезажигания лампы зависит только от величины индуктивности балласта и характеристик лампы, и не зависит от Uc.
Необходимо учитывать, что индуктивно-емкостная схема балласта, в целом по отношению к сети, ведет себя как емкостная нагрузка, так как
Известно [18], что в случае индуктивно-емкостного балласта имеет место увеличенное искажение формы питающего напряжения по сравнению со случаем индуктивного балласта. Анализ спектра напряжения на зажимах комплекта лампа ДРЛ-ПРА (индуктивно-емкостный), показал, что относительный уровень третьей гармоники составляет 20-30%, а уровень пятой – (3-5)%, что в 2-3 раза выше, чем в чисто индуктивном балласте. Повышенное наличие высших гармоник в питающей сети с одной стороны вызывает повышение потерь в сердечниках трансформаторов подстанций [19], а с другой – увеличивает уровень помех проводным системам связи.
Реальные балластные устройства отличаются от рассмотренных выше, прежде всего наличием активных потерь, которые создаются в основном в электромагнитных элементах, а в качественных конденсаторах даже при работе в условиях повышенной температуры они не превышают 0,4%. Для стабилизации мощности лампы или обеспечения постоянства светового потока необходимо ограничивать влияние колебаний сетевого напряжения на мощность. С этой целью используют схемы со стабилизацией тока лампы. Напряжение горения лампы очень слабо зависит от величины тока, в результате мощность лампы в такой схеме также оказывается стабилизированной. В качестве элемента, ограничивающего ток лампы, используется емкостный балласт. Для того чтобы такой балласт стабилизировал ток лампы при изменении напряжения питания, в нем вместо обычного дросселя используют дроссель с высокой магнитной индукцией в сердечнике. При этом увеличение тока, сопровождающее возрастание сетевого напряжения, приводит к уменьшению реактивного сопротивления дросселя. В результате суммарное реактивное сопротивление последовательно соединенных элементов L и С возрастает и ток лампы увеличивается незначительно. Эта схема хотя и обеспечивает хорошую стабилизацию, но обладает одним существенным недостатком. Форма кривой тока лампы, работающей последовательно с емкостным балластом, даже если его индуктивный элемент линеен, получается сильно искаженной, за счет большой доли высших гармоник в суммарном токе лампы. А использование индуктивного элемента приводит к дополнительному увеличению доли высших гармоник и к еще большему искажению формы кривой тока. При этом особенно сильно возрастает третья гармоника. Для того чтобы ее уменьшить или даже перекомпенсировать, в схему включают трансформатор с рассеянием. Фаза третьей гармоники на вторичной обмотке трансформатора получается сдвинутой почти на 180° относительно фазы третьей гармоники, создаваемой емкостной составляющей балласта. Форма кривой тока в этом случае в области максимума становится плоской, а действующее значение тока при фиксированной мощности лампы уменьшается.