или
где X и Y—молекулы растворенного вещества. Различные экспериментальные данные (например, зависимость скорости образования радикалов от концентрации растворенного вещества или интенсивности возбуждающего света) находятся в хорошем согласии с выводом, вытекающим из приведенной кинетический схемы.
Установлено, что длины волн, эффективные для вторичного возбуждения (т.е.
Появление сигналов ЭПР радикала обычно связано с небольшим уменьшением интенсивности сигнала ЭПР состояния
1.В процессе фотолиза не происходит разрушения молекул
сенсибилизатора. Интенсивности сигнала ЭПР состояния
2. Спектр ЭПР состояния
3. Очень вероятно, что образуется некий комплекс триплетной молекулы и радикала. Константа скорости излучательного перехода для «состояния
§3. Двухквантовые фотопроцессы с участием триплетных молекул.
Как было отмечено выше Льюис и Липкин[54] показали, что в жестких средах могут протекать три типа первичных фотохимических реакций:
Фотодиссоциация, например:
Фотоокисление, например
Фотоионизация, например
Льюис и Каша [55] предложили два механизма этих реакций: превращение может осуществляться либо в результате поглощения фотона молекулой в основном состоянии
либо в результате поглощения фотона триплетной молекулой
В жесткой среде при низкой температуре можно накопить значительные концентрации триплетных молекул, и поглощение ими фотонов является достаточно вероятным процессом. В брутто реакции [62] последовательно поглощаются два отдельных фотона и при малых интенсивностях возбуждающего света скорость такого двухфотонного процесса пропорциональна квадрату интенсивности.
Одними из первых исследователей рекомбинационного испускания были Дебай и Эдвардс [63]. Они облучали при 77 К твердые растворы легко окисляющихся веществ (фенол, толуидин) и зарегистрировали испускание с чрезвычайно высоким временем жизни (более 100 с). Его затухание было неэкспоненциальным, и авторы предположили, что имеет место последовательность ряда стадий: фотоионизация [по терминологии Льюиса и Липкина — фотоокисление, см. уравнение (8.1)], диффузия захваченных матрицей электронов к ионизованным молекулам и их рекомбинация, в результате которой получается возбужденное состояние:
Линшиц, Берри и Швейцер [52] исследовали спектры поглощения при низкой температуре стеклообразных растворов лития в аминах. Они обнаружили интенсивный пик при 600 нм, а также более слабое поглощение, простирающееся в инфракрасную область. При освещении полоса 600 нм ослаблялась, а длинноволновый фон усиливался. Поглощение в области 600 нм авторы приписали сильно сольватированным электронам, а длинноволновое поглощение — слабо сольватированным электронам. Затем они облучили стеклообразные растворы легко окисляемых органических соединений и идентифицировали в спектрах поглощения как полосы сольватированных электронов, так и полосы радикалов или ион-радикалов. Рекомбинация при температуре жидкого азота была очень медленной, но при нагревании облученного раствора происходило испускание люминесценции и ослабление полос поглощения и радикалов и сольватированных электронов. Эти результаты доказали, что люминесценция действительно обусловлена рекомбинацией ионов и электронов [52] ((12.1) и (13.1)). Спектр люминесценции оказался идентичным спектру фосфоресценции (т. е. испускание было рекомбинационной фосфоресценцией), переходов типа