Смекни!
smekni.com

Элементы спектрального анализа (стр. 5 из 14)

Учет влияния примесей в растворителе. Растворители, используе­мые для получения квазилинейчатых спектров, могут содержать как растворимые, так и нерастворимые примеси. Растворимые приме­си могут обладать собственной люминесценцией и могут выступать в роли так называемого внутреннего фильтра, когда они поглощают или возбуждающий свет, или люминесценцию исследуемых молекул. При высоких концентрациях такие примеси могут участвовать во всевозмож­ных процессах миграции энергии между компонентами раствора, а так­же способствовать перестройке матрицы растворителя и т.д.

На нерастворимых и плохорастворимыхпримесяхпри обычном способе замораживания раствора, как на центрах кри­сталлизации, может происходить быстрый рост кристаллов н-парафина, и тем самым могут создаваться условия, как бы имитирующие ускорен­ное замораживание со всеми его преимуществами. Роль таких примесей становится еще более эффективной, если они могут служить акцептором - энергии возбуждения агрегатов исследуемых молекул в случае высокой концентрации последних. Попадание примеси в агрегации и кристаллы исследуемых молекул приводит к исчезновению диффузных спектров агрегатов, наложенных на квазилинии, что значительно облегчает ана­лиз. При проведении анализа иногда бывает целесообразно специально вносить такие примеси в исследуемую смесь [31,44, 41].

Влияние предварительного облучения. Известно, что некоторые[6] ор­ганические соединения под влиянием облучения ультрафиолетовым све­том испытывают фотохимические превращения. Поэтому во время ана­лиза сложных смесей таких соединений при рассмотрении их растворов под ультрафиолетовой лампой прикомнатнойтемпературе или во время установки ампулы (кюветы, пробирки) с раствором в дьюаре с жидким азотом облучение исследуемого объекта необходимо свести к минимуму, т. е. рассматривать под УФ-лампой минимальное время и устанавливать ампулу в дьюаре при перекрытом пучке ультрафиолетового излучения. Аналогично время рассмотрения хроматограмм на ко­лонке, в тонком слое и на бумаге под ультрафиолетовыми лучами необ­ходимо также свести к минимуму. Фотохимические превращения в растворах сложных углеродистых смесей могут происходить и под воздействием рассеянного дневного света. В работе Р..И. Персонова [31] описано, как в растворе перилена в хлороформе после 15-минутного облучения рассеянным дневным све­том обнаружилось присутствие не перилена, а неизвестного соединения, квазилинейчатый спектр люминесценции которого сдвинут по отноше­нию к спектру перилена в более длинноволновую сторону. Автор пред­полагает, что этот спектр мог принадлежать одному из хлор-производ­ных перилена, образовавшемуся в хлороформе под воздействием днев­ного облучения. Под воздействием возбуждающего излучения в исследуемом веществе могут возникать различные процессы, приводящие к ошибкам в анализе. Остановимся на процессах, носящих двухквантовый характер.

§3. Физические процессы, обусловленные двухквантовыми реакциями

Рассмотрим двухквантовые фотопроцессы, протекание которых в молекулярных системах может привести к усложнению анализа продукта с помощью эффекта Шпольского. Наиболее часто можно наблюдать фотоионизацию, фотоокисление, фоторазложение и Т-Т поглощение

В твердом стеклообразном растворе фенантрена-

при 77 К приблизительно в центре спектра ЭПР появляется новая линия для перехода
[53]. Интенсивность этой полосы погло­щения пропорциональна квадрату мощности радиочастотного поля. Это было приписано двухквантовому переходу между несоседними триплетными подуровнями. Такой тип перехо­да представляет общее явление в спектрах ЭПР триплетных состояний органических мо­лекул.

Общая теория двухквантовых переходов развита Гёпперт-Майером [45]. Впоследствии дополнялась и расширялась многими авторами[2]. Одновременное поглощение двух квантов падающей электромагнитной волны может происходить всегда, когда имеется промежуточное состояние сэнергией, близкой, (но не обязательно точно равной) энергии

средней точки между двумя уровнями энергии, причем энергия кванта падающего света дол­жна быть точно равна половине разности энергии этих уровней(рис .1.1).

Двухквантовые пере­ходы представляют собой общее явление в абсорбционной спек­троскопии различного типа [46- 51]. Для обнаружения двухквантового перехода необходимо, чтобы изме­рение производилось возможно скорее после облучения. В противном случае слабый двухквантовый сигнал может быть закрыт сигналом свободных ради­калов, возникших при разложении растворителя.

Для состояния

органических соединений двухквантовые переходы проявляются наиболее легко при магнитных полях, удовлетворяющих условию[52]:

(1.1)

Образование молекулы в электронно-возбужденном состоянии, синглетном или триплетном требует поглощения одного кванта света молекулой в основном состоянии. Поэтому первичный фото­химический акт обычно происходит в результате поглощения одного кванта света (закон Штарка — Эйнштейна). Скорость образования первичного продукта фотохимической реакции очевидно должна быть пропорциональна интенсивности света. Принсгейм [25], по-видимому, был первый, кто в 1923 г. предположил, что возможны фотохимические реакции, происходящие после поглощения кванта света молекулой в электронно-возбужденном состоянии. В этом случае первичный химический акт происходит в результате последовательного поглощения двух квантов света. Такие реакции мы в дальнейшем будем называть двухквантовыми.

где А — исходная молекула; А* — электронно-возбужденное со­стояние этой молекулы; В — продукт реакции;

и
— кванты света с одинаковой или разной энергией. Волнистой стрелкой показан темповой процесс (люминесценция или (и) безызлучательный переход в исходное состояние), который определяет собственное время жизни молекулы в состоянии А*. Из схемы сразу видно, что увеличение интенсивности света и собственного времени жизни состояния А* будут благоприятствовать реализации двухквантовых реакций.

Из схемы двухквантовой реакции следует выражение для
скорости реакции

, (2.1)

где

— интенсивность света;
— коэффициент пропорциональности. Было показано, что в неполярных жидкостях различия в энергиях одноквантовой фотоионизации ТМФД определяются различные химические реакции, в частности, с соседними молекулами растворителя. Эти реакции успешно конкурируют с быстрыми процессами внутренней конверсии.

Первичный двухквантовый фотохимический процесс часто сопровождается различными вторичными одноквантовыми фотохимическими процессами. Хотя в жесткой среде, особенно при низких температурах, можно зафиксировать такие частицы, как радикалы, ион-радикалы и электроны, часто трудно установить, образовались ли они в первичном двухквантовом процессе или во вторичных процессах[53].

Молекулы в высших возбужденных состояниях обычно могут вступать с разной вероятностью в различные первичные реакции. Естественно, что изменение среды сильно влияет на направление первичной реакции. Как недавно было установлено, увеличение энергии второго кванта приводит не только к резкому увеличению эффективности двухквантовой реакции, но и к изменению преимущественного направления химической реакции. Учитывая все эти соображения, целесообразно обсуждать двухквантовые реакции не по типам химических реакций а по классам ароматических соединений[53].

Льюис и Липкин[54] показали, что в жестких средах могут протекать три типа первичных фотохимических реакций:

Фотодиссоциация, например:

(3.1)

Фотоокисление, например

(4.1)

Фотоионизация, например

(5.1)

Льюис и Каша [54] предложили два механизма этих реак­ций: превращение может осуществляться либо в результате поглощения фотона молекулой в основном состоянии

(6.1)

либо в результате поглощения фотона триплетной молекулой

.(7.1)

В жесткой среде при низкой температуре можно накопить зна­чительные концентрации триплетных молекул, и поглощение ими фотонов является достаточно вероятным процессом. В брутто реакции [67] последовательно поглощаются два отдельных фо­тона и при малых интенсивностях возбуждающего света скорость такого двухфотонного процесса пропорциональна квадрату интенсивности.

Механизм реакции двухфотонной сенсибилизированной реакции разрыва связи молекулы ЛВ растворителя может быть записан следующим образом[55]: