Световой поток одного ряда светильников следует рассчитывать по формуле 3.15
Световой поток на одну лампу определим по формуле 3.16
Светильники УПД, напряжением
Следует рассчитать освещение для бытового помещения:
а) Определяется требуемая нормами освещённость Е, лк (по таблице 51. В.И. Дъяков «Типовые расчёты»).
Для бытового помещения берётся 300 лк.
Тип светильника «Астра» -1 группа светильника Г:
б) Расчётная высота;
в) Индекс помещения;
г) Коэффициент отражения следует принять
д) Коэффициент использования светового потока
Световой поток одного ряда светильников
Световой поток на одну лампу определим по формуле 3.16
Светильники «Астра» -1, напряжение
Выполним расчет освещения для кладовой по аналогичной методике
а) Освещённость 20 лк. (по таблице 51. В.И. Дъяков «Типовые расчёты»).
Тип светильника «Астра» -1. Располагают светильники в один ряд два светильника БК:
б) Расчётная высота
в) Индекс помещения;
г) Коэффициенты отражения следует принять
д) Коэффициент использования светового потока
Световой поток одного ряда светильников
Световой поток на одну лампу
Светильники «Астра» -1, напряжение
Следует рассчитать освещение в ЩСУ.
а) Освещённость 1000 лк. (по таблице 51. В.И. Дъяков «Типовые расчёты).
Тип светильника «Астра» – 1, группа светильника БК. Располагают светильники в три параллельных ряда по три в каждом. L=2 м.
б) Расчётная высота
в) Индекс помещения
г) Коэффициенты использования светового потока
д) Коэффициенты отражения следует принять:
Световой поток одного ряда светильников
Световой поток на одну лампу
Светильники «Астра» -1, напряжение
Необходимо рассчитать освещение подстанции:
а) Освещённость 250 лк, (по таблице 51. В.И. Дъяков «Типовые расчёты»).
Тип светильника «Астра» – 1, группа светильника Г. L=2 м – расстояние между светильниками.
б) Расчётная высота;
в) Индекс помещения
д) Коэффициенты отражения следует принять:
г) Коэффициенты использования светового потока
Световой поток одного ряда светильников
Световой поток на одну лампу
Светильники «Астра» -1, напряжение
3.5 Компенсация реактивной мощности
Для реактивной мощности приняты такие понятия, как потребление, генерация, передачи и потери. Считают, что если ток отстает по фазе от напряжения (индуктивный характер нагрузки), то реактивная мощность потребляется, а если ток опережает напряжение (емкостной характер), реактивная мощность генерируется. С точки зрения генерации и потребления между реактивной и активной мощностью существуют значительные различия. Если большую часть активной мощности потребляют приёмники и лишь незначительная теряется в элементах сети и электрооборудовании, то потери реактивной мощности в элементах сети могут быть соизмеримы с реактивной мощностью.
Производство значительного количества реактивной мощности генераторами электростанций во многих случаях экономически целесообразно по следующим основным причинам.
а) при передаче активной РкВт, и реактивной QкВар, мощностей через элемент системы электроснабжения с сопротивлением R потери активной мощности составят
Дополнительные потери активной мощности
б) Возникают дополнительные потери напряжения. Например, при передаче мощностей Pквт и Q, кВар, через элемент системы электроснабжения с активным сопротивлением R и реактивным X потери напряжения составят
где
в) Загрузка реактивной мощностью систем промышленного электроснабжения и трансформаторов уменьшает их пропускную способность и требует увеличения сечения проводов и кабельных линий, увеличения номинальной мощности или числа трансформаторов подстанций и т.п.
Мероприятия, проводимые по компенсации реактивной мощности, могут быть разделены на связанные со снижением потребления реактивной мощности приёмниками электроэнергии и требующие установки КУ в соответствующих точках системы электроснабжения.
Для повышения
При выборе мощности конденсаторных установок была учтена реактивная мощность, необходимая для компенсации в таких сооружениях, как хлораторная, здание сгустителей осадка, станции промывных оборотных вод и очистной насосной станции. [6].
4. Охрана труда
4.1 Защитное заземление и зануление
Важной мерой, обеспечивающей электробезопасность обслуживающего персонала, является защитное заземление или зануление металлических нетоковедущих (конструктивных) частей электрооборудования, нормально не находящихся под напряжением, но могущих оказаться под напряжением относительно земли в случае повреждения изоляции электрических машин, аппаратов, приборов и сетей.
Правила устройства электроустановок дают следующие основные определения в отношении заземлений.
Защитным заземлением, выполняемым для обеспечения электробезопасности, называется преднамеренное металлическое соединение с заземляющим устройством элементов электроустановок, нормально не находящихся под напряжением.