Чим більша ширина забороненої зони, тим більшу енергію має набрати носій в електричному полі p-n переходу, щоб могла відбутись ударна іонізація. При збільшенні температури напруга лавинного пробою зростає, що пов’язано з зменшенням довжини вільного пробігу носіїв. При меншій довжині вільного пробігу потрібна більша напруженість електричного поля для того, щоб носії набули енергію, достатню для ударної іонізації.
Таким чином, температурний коефіцієнт напруги лавинного пробою додатній.
Для практичних розрахунків використовується наступна емпірична залежність напруги пробою від концентрації легуючої домішки та ширини забороненої зони:
[Eg]=еВ, [N]=см–3.
При невеликих концентраціях домішок (менше 1018 см–3) напруга лавинного пробою нижча, чим тунельного, тобто спостерігається лавинний пробій. У цьому випадку
Принципова електрична схема, яка використовується для досліджень, представлена на рис. 7.2.
Завдання до лабораторної роботи
1. Зібрати електричну схему зображену на рис. 7.2.
2. Дослідити ВАХ низько- та високовольтних стабілітронів при трьох температурах.
Рис. 7.2 Принципова електрична схема для дослідження Ub=f(T)
3. Побудувати графіки I=f(U). Визначити з цих залежностей напругу пробою Ub – як початкову ділянку різкого зростання струму. По знаку
4. Для тунельного пробою за формулою (7.1) визначити концентрацію Nd при заданому Ек=1,4·106 В/см та ε=12 (Si). За емпіричною формулою
(V1=0,018 eB, NΣ=Nd+Na см–3, NG=1017 см–3) оцінити звуження ширини забороненої зони ΔЕg. Знайти значення концентрації неосновних носіїв заряду – р. Для визначення р необхідно використати залежність
де ni –концентрація носіїв заряду у власному напівпровіднику без врахування звуження ширини забороненої зони (див. додаток 2).
У допущенні повної іонізації донорної домішки визначити положення рівня Фермі (див. ф-лу (5.5)). Зобразити одержані результати на енергетичній діаграмі.
5. Для випадку лавинного пробою за формулою (7.2) визначити ширину забороненої зони Eg (N=Nd=2·1017см–3). Розрахувати концентрацію неосновних носіїв заряду. Визначити положення рівня Фермі. Представити одержані результати на енергетичній діаграмі.
6. Порівняти отримані результати з літературними та довідниковими даними. Зробити висновки.
Література
[1]. c. 248-278. [2]. c. 192-207. [4]. с. 270-273. [6]. с. 289-293.
Список рекомендованої літератури
1. Соболев В.Д. Физические основы электронной техники. – М.: Высшая школа, 1979. – c. 248-278.
2. Герасимов С.М., Белоус М.В., Москалюк В.А. Физические основы электронной техники. – К.: Вища школа, 1981. – c. 192-207.
3. Кучерук І.М., Горбачук І.Т. Загальна фізика: Підручник.–2-е вид., перероб. і допов. . – К.: Вища школа, 1995. – c. 151-166.
4. Шалимова К.В. Физика полупроводников. М.: Энергия, 1976, – с. 270–273.
5. П.Т. Орешкин Физика полупроводников и диэлектриков. – М:, Высшая школа, 1977. с. 191-210.
6. Г.И. Епифанов. Физические основы микроэлектроники. М.: Советское радио, 1971, – с.320.
Додаток 1
Врахування спектрального розподілу густини випромінювання лампи розжарювання
Кількість енергії, яка випромінюється за одиницю часу з одиниці площі в одиничному інтервалі частоти абсолютно чорним тілом в одиничному інтервалі частоти
де С1 і С2 – постійні (С1=3,74·10–16 Вт·м2; С2=1,438·10–2 м·К).
Якщо в якості джерела світла використовується лампа розжарювання з вольфрамовою спіраллю, то необхідно врахувати коефіцієнт чорноти для вольфраму. Відомо, що при температурі 1600 К цей коефіцієнт лінійно зменшується від 0,5 (λ=0,4 мкм) до 0,32 (λ=1,2 мкм), а при температурі 2800 К від 0,42 до 0,32 для вказаних довжин хвиль.
Для зручності користування формулу Планка записують у приведеному вигляді через безрозмірні величини Xта Y:
де
З врахуванням (Д.2) формулу Планка можемо записати у зручному для розрахунків вигляді:
При приведенні результатів дослідження спектральної залежності величини фотоструму до одиниці поглинутої енергії необхідно
Література
1. Г.Г. Ишанин, Э.Д. Панков, В.С. Радайкин. Источники и приемники излучения. – М.: Машиностроение, 1982, 222 с.
2. Л.З. Криксунов. Справочник по основам инфракрасной техники. – М.: Советское радио, 1978, – 400 с.
Додаток 2
Властивості власних напівпровідників Si, Geі GaAsпри 300 К
Si | Ge | GaAs | |
Ширина забороненої зони Еg, еВ | 1,1 | 0,66 | 1,43 |
Ефективна густина станів, см–3:NCNV | 2,8·10191,02·1019 | 1,04·10196,1·1018 | 4,4·10178,6·1018 |
Власна концентрація, ni, см–3 | 1,45·1010 | 2,4·1013 | 1,3·107 |
Дрейфова рухливість електронів і дірок, см2/(В·с)μnμp | 1350480 | 39001900 | 8500400 |
Дрейфова швидкість насичення електронів і дірок, см/сvsnvsp | 1·1078·106 | 6·1066·106 | 1·107– |
Питомий опір ρ, Ом·см | 2,3·105 | 47 | 5·106 |
Відносна діелектрична проникність ε | 12 | 16 | 11 |
Електричне поле пробою Екр, кВ/см | 300 | 100 | 400 |
Коефіцієнт теплопровідності λ, Вт/(см·К) | 1,45 | 0,64 | 0,46 |
Питома теплоємність С, Дж/(г·К)) | 0,7 | 0,31 | 0,35 |