§ 5.4. Дифракція світла.
1. Принцип Гюйгенса - Френеля. Метод зон Френеля
Дифракція – це явище огинання світловими хвилями перешкод і проникнення світла в область геометричної тіні. Для спостереження дифракції необхідно, щоб розміри перешкод були співмірні з довжиною хвилі світла.
Проникнення світла в область геометричної тіні пояснює принцип Гюйгенса: кожна точка фронту хвилі являється джерелом вторинної сферичної хвилі. Положення фронту хвилі в наступний момент визначається огинаючою фронтів всіх вторинних хвиль. Принцип Гюйгенса не дозволяє знайти інтенсивність дифрагованої хвилі. Цей недолік усунув Френель, який доповнив принцип Гюйгенса уявленням про інтерференцію вторинних хвиль.
Нехай S (мал.5.8) – хвильова поверхня світла, яке поширюється від деякого джерела. Кожен елемент поверхні служить джерелом вторинної хвилі. Ці хвилі –когерентні. Від кожного елемента поверхні dSв точку Р приходить коливання
(5.20)Тут
– амплітуда і фаза коливання в місці знаходження хвильової поверхні S, k – хвильове число, r – відстань від елемента dS до точки Р. Коефіцієнт залежить від орієнтації елемента dS відносно r.Результуюче коливання в точці Р, згідно Френелю, являє суперпозицію коливань всієї хвильової поверхні S:
(5.21)Формула (5.21) є аналітичним виразом принципу Гюйгенса-Френеля.
В ряді дифракційних задач, що мають осьову симетрію, розрахунок інтерференції вторинних хвиль спрощується за допомогою розбиття фронту хвилі на кільцеві зони Френеля. Розбиття на зони проводиться таким чином, що оптична різниця ходу від відповідних точок кожної пари сусідніх зон до точки спостереження Р дорівнює
Вторинні хвилі від відповідних точок двох сусідніх зон приходять в точку Р в протифазі і послаблюють одна одну при накладанні (мал.5.9).Нехай
…, – величини результуючих амплітуд хвиль, які приходять в точку Р від кожної зони. Сумарна амплітуда в точці Р від усього фронту буде дорівнювати . (5.22)За рахунок збільшення кута нахилу
з ростом номера зони, амплітуди хвиль монотонно зменшуютьсяМожна вважати, що
(5.23)Тепер результуючу амплітуду А можна записати у вигляді
Очевидно, що вирази в дужках дорівнюють нулю, тоді
(5.24)для парного числа зон Френеля. Результуюча амплітуда при цьому мінімальна і в точці Р буде мінімум освітленості. Якщо ж N – непарне, то
(5.25)і в точці Р спостерігається максимум освітленості.
Для повністю відкритої хвильової поверхні
і тому тобто дія всієї хвильової поверхні еквівалентна дії половини центральної зони Френеля.Якщо дифракція світла відбувається на круглому диску, який закриває N перших зон Френеля, то результуюча амплітуда в точці Р буде визначатисявеличиною
(5.26)Дифракційна картина у цьому випадку має вигляд концентричних світлих і темних кілець. В центрі картини при довільному N (парному, чи непарному) спостерігається світла пляма (пляма Пуасона). При збільшенні розмірів диска величина амплітуди
буде зменшуватись. Врешті-решт при досить великих розмірах диска і При цьому в точці Р буде темна пляма – геометрична тінь.Таким чином, закони геометричної оптики можна застосовувати у тих випадках, коли розміри перешкод і отворів великі порівняно з довжиною хвилі світла.
2. Дифракція Фраунгофера
Дифракцією Фраунгофера називається дифракція плоских хвиль. Дифракція Фраунгофера має більше практичне значення, ніж дифракція Френеля (дифракція сферичних хвиль).
Розглянемо довгу прямокутну щілину BС шириною b, на яку нормально падає паралельний пучок монохроматич- ного світла (мал.5.10). Згідно з принципом Гюйгенса-Френеля, точки щілини являються когерентними вторинними джерелами, що коливаються в одній фазі (площина щілини співпадає з фронтом хвилі).
За допомогою лінзи Л на екрані Е спостерігається дифракційна картина, яка являє собою систему максимумів і мінімумів. Знайдемо умови спостереження максимумів і мінімумів. Для цього розіб’ємо фронт хвилі ВС на зони Френеля таким чином, щоб оптична різниця ходу від країв сусідніх зон у певному напрямку поширення дифрагованої хвилі під кутом дифракції
складала половину довжини хвилі З мал.5.10 видно, що ширина зони Френеля дорівнює Якщо число зон парне, тобто (m 1,2,3,…), (5.27)то під кутом
спостерігається дифракційний мінімум. Випромінювання відповідних точок сусідніх зон відбувається у протифазі, через те сусідні зони гасять одна одну.Якщо число зон непарне, тобто
, (m 1, 2, 3, …), (5.28)то спостерігається дифракційний максимум, який відповідає дії однієї нескомпенсованої зони Френеля. Величина m називається порядком дифракційного максимуму.
Амплітуда хвилі в точці спостереження одержується на основі принципу Гюйгенса-Френеля:
(5.29)де
– амплітуда в центрі дифракційної картини приРозподіл інтенсивностей
: (5.30)Цей розподіл показаний на мал.5.11.
Перейдемо до дифракції на одномірній дифракційній решітці, яка являє собою систему N однакових паралельних щілин шириною а, розміщених на однакових відстанях b. Величина d=a+b називається періодом решітки. Сучасна дифракційна решітка має до 1200 щілин (штрихів) на 1 мм.
Дифракційна картина після решітки складніша порівняно з картиною від однієї щілини. Це зумовлене тим, що відбувається інтерференція хвиль, які йдуть від різних щілин решітки. Крім того, має місце підсилення максимумів і їх звуження.
Якщо світло падає нормально на решітку, то виконуються слідуючі умови:
для головних максимумів:
(m 0, 1, 2, …); (5.31)для головних мінімумів:
(n 1, 2, 3, …); (5.32)для додаткових мінімумів:
(5.33)(k–довільні цілі додатні числа крім 0, N, 2N, 3N, …).
Розподіл інтенсивності на екрані спостереження:
(5.34)де
–інтенсивність в напрямку для однієї щілини. В головних максимумах інтенсивність в разів більша, ніж дає у відповідних місцях щілина. При великому значенні Nвторинні максимуми майже непомітні на екрані, їх інтенсивність не більша 5% від інтенсивності головного максимуму.