Ядра атомів різних хімічних елементів мають загальну назву нукліди. В ядерній фізиці за одиницю заряду приймають елементарний електричний заряд е, а за одиницю маси – атомну одиницю маси (а.о.м.). 1а.о.м. рівна 1/12 маси найбільш поширеного нукліда вуглецю. Очевидно, 1а.о.м.
де mc – маса нукліда вуглецю,
Зарядове число Zі масове число А являються основними характеристиками будь-якого ядра, тому ядро даного елемента позначається хімічним символом цього елемента з індексами Z та А, а саме –
Детальне вивчення нуклонів показало, що протон – стабільна елементарна частинка з зарядом +1 і масою mp=1,00728 а.о.м.; він також має спін j=1/2 і магнітний момент
Згідно з нуклонною моделлю ядро
В природі зустрічаються елементи з атомним номером Z від 1 до 92 (крім технецію
Ефективний радіус ядра виражається формулою
де
Спіни і магнітні моменти нуклонів складаються в результуючий спін і магнітний момент ядра. Оскільки спін нуклона
Взаємодією магнітних моментів ядра та електронів атома обумовлюється так звана надтонка структура атомних спектрів. Пов’язаний зі спіном ядра магнітний момент знайшов широкі застосування в експериментальній методиці ядерного магнітного резонансу.
§ 7.2. Дефект маси та енергія зв’язку ядра. Ядерні сили. Моделі ядра
Користуючись таблицею мас ізотопів, можна пересвідчитись, що маса ядра mя менша суми мас нуклонів, з яких воно складається. Величину
називають дефектом маси ядра. Його існування обумовлене тим, що при об’єднанні нуклонів у ядро виділяється енергія у виді квантів, які виносять частину маси. Цю енергію можна розрахувати за формулою Ейнштейна про взаємозв’язок маси-енергії
де с – швидкість світла у вакуумі. Очевидно, щоб розкласти ядро на невзаємодіючі нуклони, потрібно таку ж енергію затратити. Ця енергія
називається енергією зв’язку ядра.
Для практичних застосувань співвідношення (7.5) зручно записувати у вигляді:
де mн – маса атома водню, ma – маса атома елемента, ядро якого розглядається. При переході до наближеної формули (7.6) нехтують малою енергією зв’язку електронів з ядром; зручність (7.6) полягає у тому, що в довідниках наводяться не маси ядер mя, а маси атомів ізотопів ma. На основі (7.4) можна пересвідчитись, що 1а.о.м. еквівалентна енергії 931,5 МеВ, тому, виражаючи квадратну дужку формули (7.6) в а.о.м., для енергії зв’язку ядра в МеВ одержують:
Очевидно, енергія зв’язку характеризує міцність ядра. Прийнято розглядати так звану питому енергію зв’язку
Для легких ядер (
А~50–60, а тоді повільно зменшується у важких елементів (наприклад, для
Величезна питома енергія зв’язку свідчить, що між нуклонами в ядрі діють особливі сили притягання, які значно переважають електромагнітну та гравітаційну взаємодію нуклонів. Взаємодія між нуклонами в ядрі одержала назву сильної взаємодії. Ядерні сили мають ряд характерних особливостей, вони:
1 – короткодіючі, радіус їх дії~10–15м;
2 – зарядовонезалежні, мають неелектричну природу;
3 – спіновозалежні, залежать від орієнтації спінів нуклонів;
4 є нецентральними, не напрямлені вздовж прямої, що з’єднує центри нуклонів;
5 мають властивість насичення, діють лише між найближчими сусідами.
У 1934 р. І.Є. Тамм висунув гіпотезу, що сильна взаємодія повинна мати обмінну природу. По аналогії з електромагнітною взаємодією, яка квантовою електродинамікою описується як процес віртуального обміну електронів фотонами:
нуклони в ядрі повинні обмінюватись деякими віртуальними частинками з масою спокою відмінною від нуля. Віртуальними називаються частинки, час життя яких менший того, що визначається співвідношенням невизначеностей
де