Аналізуючи умовні експерименти, пов’язані з проходженням мікрочастинок через щілини, Гайзенберг (1927 р.) встановив наступні співвідношення між невизначеностями координат та відповідних імпульсів мікрочастинок
Інтерпретацію цих співвідношень дав Н. Бор у вигляді принципу доповнюваності:
1) інформація про стан мікрочастинок може бути отримана лише за допомогою макроприладів, які взаємодіють з мікрочастинками;
2) за допомогою конкретного макроприладу можна встановити точне значення або координати, або імпульсу; при цьому чим точніше встановлена одна характеристика, тим невизначеніша інша.
Із співвідношення Гайзенберга слідує, зокрема, що поняття електронної орбіти в атомі втрачає зміст. Дійсно, якщо невизначеність швидкості електрона співмірна з самою швидкістю, тобто
Пара “координата-імпульс” у співвідношенні (6.12) не є випадковою, оскільки вона входить як добуток в рівняння плоскої хвилі де Бройля (6.11), представлене у вигляді
І тому слід очікувати, що і для іншої пари “енергія-час” матиме місце співвідношення невизначеності
де
§ 6.3. Хвильова функція та її зміст. Рівняння Шрьодінгера
Корпускулярно-хвильовий дуалізм матерії встановлює межі застосування класичної механіки, і для опису мікросвіту використовуються закони квантової механіки, в якій стан мікрочастинок задається вже не координатами та імпульсами, а хвильовою функцією
де
З точки зору хвильових уявлень квадрат амплітуди хвилі визначає її інтенсивність; з точки зору корпускулярних уявлень – це ймовірність виявити мікрочастинку в певній області простору. Отже, фізичний зміст має не сама хвильова функція, а вираз
Для частинок, які не є вільними, хвильова функція не представляється хвилею де Бройля, але її ймовірнісна інтерпретація залишається в силі.
Оскільки імовірність повинна бути однозначною, неперервною і скінченною, то на хвильову функцію накладаються наступні стандартні вимоги:
1) вона повинна бути однозначною, неперервною і скінченною;
2) перші похідні від хвильової функції по координатах і часу також повинні бути неперервними, що забезпечить “гладкість” імовірності;
3) вона повинна бути інтегрованою; зокрема,
Для знаходження хвильової функції конкретного квантовомеханічного об’єкту необхідно розв’язати рівняння Шрьодінгера (1926 р.)
яке є аналогом ІІ закону Ньютона класичної механіки. В цьому рівнянні
оператор Гамільтона або оператор повної енергії частинки, де m – маса частинки,
U – оператор потенціальної енергії, дія якого зводиться до простого множення на хвильову функцію.
Якщо потенціальна енергія частинки явно не залежить від часу, тобто
Координатнозалежну складову хвильової функції знаходять із розв’язку рівняння Шрьодінгера для стаціонарних станів
де параметр Е має зміст енергії частинки.
Розв’язок цього диференційного рівняння задовільняє стандартні вимоги до хвильової функції, як правило, не при усяких, а дозволених (дискретних) значеннях параметра Е. Ці значення Е називаються власними значеннями оператора
§6.4. Частинка в одновимірній прямокутній потенціальній ямі (ящику). Проходження частинки через потенціальний бар’єр
Усякий зв’язаний стан частинки (електрон в атомі, вільний електрон в металі, нуклон в ядрі тощо), тобто стан з від’ємною потенціальною енергією, можна описати поняттям потенціальної ями.
Розглянемо найпростіший випадок, коли частинка масою m перебуває в одновимірній прямокутній нескінченно глибокій потенціальній ямі шириною l .Оскільки початок відліку потенціальної енергії можна вибирати довільно, то задачу про “яму” замінимо задачею про “ящик”, на дні якого потенціальна енергія дорівнює нулю, а стінки якого нескінченно високі (мал.6.3). Оператор Гамільтона
де
Всередині ящика рівняння Шрьодінгера запишеться як
Розв’язок цього рівняння, з врахуванням стандартних вимог, зокрема,
де n=1,2,3,… – квантове число стану частинки. Енергія частинки в різних квантових станах
тобто приймає не довільні, а дискретні значення Е1, Е2, Е3, …, зображені на мал.6.3 відповідними енергетичними рівнями. Густина імовірності
Відстань між сусідніми енергетичними рівнями
Зокрема, для електрона в ямі шириною l
Спорідненою до описаної є задача про проходження частинки через потенціальний бар’єр шириною lі висотою U0 (мал.6.4). Якщо частинка класична, то вона пролітає над бар’єром, коли Е>U0, і відбивається від нього, коли Е<U0, бо проникнення під бар’єр означало б, що її кінетична енергія від’ємна.
Для квантовомеханічної мікро-частинки розв’язок рівняння Шрьодінгера дає, що хвильові функції в усіх трьох областях (