Отже, основна ідея постулатів Бора полягає в квантуванні (дискретності) механічних характеристик руху електронів в атомі (моменту імпульса, енергії тощо) і в стрибкоподібній зміні цих характеристик.
Вперше ядерна модель атома з постулатами Бора була застосована до воднеподібних атомів
де
Для повної механічної енергії електрона
де
Отже, енергія воднеподібних атомів в стаціонарних станах приймає дискретні значення, тобто квантується. Стан з найнижчою енергією
Зобразимо енергетичну діаграму борівського атома водню (
Довжини випромінюваних світлових хвиль розраховуються за серіальною формулою Бальмера:
де n2 – квантове число стану, з якого відбувається перехід, n1 – квантове число стану, в який переходить атом.
Усі спектральні лінії можна згрупувати в наступні серії: І–серія Лаймана (
Теорія Бора дуже добре описала положення спектральних ліній випромінювання воднеподібних атомів, але виявилась нездатною пояснити спектри випромінювання складних атомів, а також інтенсивності спектральних ліній навіть атомарного водню. Слабкість цієї теорії зумовлена її непослідовністю: вона – напівкласична, напівквантова.
§ 6.2. Корпускулярно-хвильовий дуалізм матерії; гіпотеза де Бройля. Співвідношення невизначеностей Гайзенберга
В 1924 р. Луі де Бройль висунув гіпотезу (постулат) про те, що корпускулярно-хвильовий дуалізм притаманний не тільки світлу, як це показано в розділі V, але матерії взагалі: усяка частинка, яка має імпульс
та частотою
В залежності від величини швидкості v (чи кінетичної енергії Т) частинок, їх імпульс розраховується або за класичною формулою (при v<<c, T<<E0)
або за релятивістською формулою (при
де m0 – маса спокою частинки (таблична величина),
Відомо, що хвильові властивості світла найбільш чітко проявляються в явищі дифракції. І тому прояву хвильових властивостей електронних (нейтронних, атомних тощо) пучків слід очікувати в цьому явищі, при якому чітка дифракційна картина спостерігатиметься, коли довжина хвилі співмірна з розміром дифракційної неоднорідності.
Оцінимо довжину хвилі де Бройля електронів, які прискорились відносно слабким електричним полем (
Відмітимо, що довжина хвиль де Бройля рухомих макротіл, за рахунок великої маси, настільки мала, що їх хвильову природу виявити неможливо.
В класичній механіці стан частинки задається сукупністю точно заданих координат (x,y,z) та проекцій вектора імпульсу (рх, рy, рz). Зокрема, для одновимірного випадку неточності (невизначеності) координати (
Корпускулярно-хвильовий дуалізм частинок в мікросвіті накладає обмеження на можливості класичного опису. Дійсно, вільна частинка, що рухається вздовж осі х, описується плоскою монохроматичною хвилею де Бройля
де
В мікросвіті можна змоделювати об’єкти (наприклад, хвильовий пакет), для яких координата точно визначена (