Смекни!
smekni.com

Фізика напівпровідників (стр. 11 из 25)

Підставляючи (5.52) в (5.50) і інтегруючи, знайдемо

(5.53)

Отже, інтегральна випромінювальна здатність абсолютно чорного тіла пропорційна четвертій степені абсолютної температури. Це є закон Стефана-Больцмана. У формулі (5.53)

– постійна Стефана-Больцмана.

Досліджуючи вираз спектральної випромінювальної здатності на екстремум, знайдемо, що частота

при якій спостерігається максимум спектральної випромінювальної здатності абсолютно чорного тіла, пропорційна температурі, або відповідна довжина хвилі

(5.54)

Це – закон зміщення Віна. Стала

. Згідно закону Віна, максимум спектральної випромінювальної здатності при зростанні температури тіла зміщується у високочастотну ділянку спектра.

На законах Стефана-Больцмана і Віна базується робота пірометрів – приладів, які дозволяють вимірювати високі температури.


§ 5.7. Фотоефект

Розрізняють зовнішній і внутрішній фотоефект. Внутрішній фотоефект спостерігається в напівпровідниках і полягає в тому, що під дією світла електрони відриваються від атома, але залишаються всередині кристалу, в результаті чого збільшується провідність напівпровідника.

Зовнішній фотоефект – це явище виривання електронів з поверхні металу під дією світла. Зовнішній фотоефект був відкритий Герцем у 1887 р. і досліджений Столєтовим у 1888-89 рр. Схема дослідів Столєтова приведена на мал 5.22.

Основні закономірності фотоефекту:

1. сила фотоструму прямо пропор-ційна інтенсивності світла, яке падає на катод;

2. фотоефект – безінерційний;

3. кінетична енергія вирваних елек-тронів збільшується зі збільшенням частоти падаючого світла. Існує мінімальна частота, з якої починається фотоефект. Це – червона межа фотоефекту.

Теоретичне пояснення фото-ефекту дав Ейнштейн у 1905 р. Він використав гіпотезу Планка про квантову природу випромінювання світла і припустив, що енергія поглинутого кванта йде на роботу виходу електрона з металу і на надання електрону кінетичної енергії:

(5.55)

Це – рівняння Ейнштейна для фотоефекту. З рівняння (5.55) можна знайти найменшу частоту

при якій починається фотоефект. Це і є червона межа фотоефекту:

(5.56)

§ 5.8. Тиск світла

Тиск світла можна пояснити з квантової точки зору. Кванти світла (фотони) мають масу та імпульс. Маса фотона

визначається з релятивістського співвідношення Ейнштейна
Звідки, враховуючи (5.51), отримаємо

(5.57)

Залежність маси від швидкості

в застосуванні до фотона
має зміст лише при
Це означає, що маса спокою фотона рівна нулю.

Імпульс фотона, з врахуванням (5.57),

(5.58)

Нехай на одиницю поверхні тіла за одиницю часу падає n фотонів. При цьому

– число відбитих фотонів (R – коефіцієнт відбивання), і (1-R)n – число поглинутих фотонів. Тоді, за другим законом Ньютона, зміна імпульсу площадки визначатиме тиск світла:

(5.59)

Враховуючи, що

– інтенсивність світла, отримаємо:

. (5.60)

Для дзеркальної поверхні

, а для чорної (
. Таким чином, тиск на дзеркальну поверхню – вдвічі більший, ніж на чорну, що і спостерігав П.М.Лєбєдєв в своїх дослідах з вимірювання тиску світла.

§ 5.9. Ефект Комптона

Досліджуючи розсіювання рентгенівських променів в кристалах, Комптон (1923 р.) встановив, що в розсіяному випромінюванні, крім незміщеної компоненти з довжиною хвилі

, існує зміщена компонента з довжиною хвилі
. При розсіюванні легкими атомами (
В) практично все розсіяне випромінювання має зміщену довжину хвилі. По мірі збільшення атомного номера все більша частина випромінювання розсіюється без зміни довжини хвилі.

Ефект Комптона можна пояснити з квантової точки зору, як процес непружного розсіювання рентгенівських фотонів на вільних електронах. Вільними можна вважати слабо зв’язані з атомами електрони.

Нехай

і
– значення енергії і імпульсу фотона до розсіювання. Після зіткнення енергія і імпульс фотона зменшуються:
і
. Звідси випливає, що
. Тобто, в результаті розсіювання частота фотона зменшується (довжина хвилі збільшується). Згідно законів збереження енергії і імпульсу, зміна довжини хвилі фотона при розсіюванні

, (5.61)

де

– стала величина, яка називається комптонівською довжиною хвилі тієї вільної частинки, на якій відбувається розсіювання (
– маса спокою вільної частинки).

Для електрона

.

Формула (5.61) добре узгоджується з результатами експериментальних досліджень ефекту Комптона.

Таким чином, світло одночасно має властивості неперервних електромагнітних хвиль (інтерференція, дифракція) і властивості дискретних фотонів (фотоефект, ефект Комптона). Воно являє собою діалектичну єдність цих протилежних властивостей. В прояві хвильових і корпускулярних властивостей світла є закономірність: при зменшенні довжини хвилі більш чітко проявляються квантові властивості і навпаки, у довгохвильового випромінювання основну роль відіграють його хвильові характеристики.

Можна зробити висновок, що корпускулярні і хвильові властивості світла не виключають, а, навпаки, взаємно доповнюють одна одну. Зв’язок між корпускулярними і хвильовими характеристиками світла виражається формулою

, (5.62)

де

– довжина хвилі, p – імпульс фотона, h – стала Планка.

Квадрат амплітуди світлової хвилі в деякій точці простору являється мірою імовірності попадання фотонів в цю точку. Корпускулярні властивості зумовлені тим, що енергія, імпульс і маса випромінювання локалізовані в дискретних частинках – фотонах, хвильові – статистичними закономірностями розподілу фотонів у просторі.

§ 5.10. Гальмівне рентгенівське випромінювання

Рентгенівські промені (

виникають при бомбардуванні швидкими електронами твердих тіл. Такий процес реалізується в рентгені-вських трубках. У найпростішому випадку це – двоелектродна ва-куумна трубка (мал.5. 23), катод К якої є джерелом електронів, що виникають внаслідок явища термоелектронної емісії. Анод А, виготовлений із важких металів (Cu, Fe, Co, Wтощо), служить мішенню.

Якщо між катодом і анодом прикладена велика напруга U, то електрони розганяються до енергій еU=104–105еВ. Попадаючи в речовину анода, електрони сильно гальмуються і тому випромінюють електромагнітні хвилі – гальмівне рентгенівське випромінювання.

Відомо, що заряд, який рухається прискорено, є джерелом електромагнітних хвиль із неперервним спектром. Спектр гальмівного рентгенівського випромі-нювання (мал.5.24) хоч і суцільний, але обмежений з боку малих довжин хвиль так званою короткохвильовою межею

. З ростом прискорюючої напруги U
зменшується. Класична електродинаміка не пояснює появи короткохвильової межі гальмівного випромінювання. Її існування безпосередньо випливає з квантової природи випромінювання. Якщо врахувати, що максимальна енергія рентгенівського кванта не може перевищувати кінетичної енергії електрона, то