Смекни!
smekni.com

Фізика відкритих систем. Синергетика (стр. 5 из 5)

Крім будови окремих нервових клітин відносно добре вивчені глобальні аспекти діяльності мозку – спеціалізація його великих областей, функціональні зв'язки між ними й т.п. У той же час мало відомо, як же здійснюється обробка інформації на проміжному рівні, у ділянках нейронної мережі, що містять усього десятки тисяч нервових клітин.

Іноді мозок уподібнюють до колосальної обчислювальної машини, що відрізняється від звичайних комп'ютерів лише значно більшим числом складових елементів. Вважається, що кожен імпульс збудження переносить одиницю інформації, а нейрони відіграють роль логічних перемикачів у повній аналогії із будовою ЕОМ. Така точка зору помилкова. Робота мозку повинна ґрунтуватися на дещо інших принципах. У мозку немає твердої структури зв'язків між нейронами, що була б подібна до електричної схеми ЕОМ. Надійність його окремих елементів (нейронів) набагато нижча, ніж елементів, використовуваних для створення сучасних комп'ютерів. Руйнування навіть таких ділянок, які містять досить велике число нейронів, найчастіше майже не впливає на ефективність обробки інформації в цій області мозку. Частина нейронів відмирає при старінні організму. Ніяка обчислювальна машина, побудована на традиційних принципах, не зможе працювати при таких великих ушкодженнях.

Сучасні обчислювальні машини виконують операції послідовно, по одній операції на такт (подібно людині з арифмометром або логарифмічною лінійкою). Число витягається з пам'яті, записується в процесор, де над ним проводиться деяка дія в відповідності з поставленою програмною інструкцією, і результат знову направляється в пам’ять. Взагалі, при виконання окремої операції електричний сигнал повинен пройти по провідниках відстань порядку розмірів центрального процесора, тому виникає обмеження на швидкодію такої обчислювальної машини.

Нехай розмір процесора дорівнює 30 см. Електричний сигнал пробігає цю відстань по металевих провідниках зі швидкістю світла за час 10-9 с. Тому, якщо всі операції виконуються послідовно, теоретична межа швидкодії цієї обчислювальної машини становить мільярд операцій за секунду.

Аналогові машини виконують за один такт не окрему дію чи операцію, а певну їх сукупність. Сьогодні інтерес до аналогових машин відроджується. Головну увагу привертають розподілені аналогові машини, що представляють собою просторові мережі із взаємодіючих між собою елементів. "Одиницями" обробки інформації в подібних машинах є цілі просторові картини.

Вузьку спеціалізацію аналогових машин можна перебороти, наділивши їх здатністю до навчання. Розглянемо це питання докладніше. Припустимо, що в закони взаємодії між елементами, які формують мережу аналогової машини, спочатку жорстко ("фізично") вбудована тільки одна програма – програма навчання. Підкоряючись цій програмі, у процесі попереднього тренування система перебудовує свою структуру: у ній встановлюються нові або розриваються старі зв'язки між елементами мережі, модифікуються параметри, що характеризують окремі елементи, і т.д. Пройшовши навчання, ця аналогова машина здобуває здатність до вирішення деякого завдання – розпізнавання образів, що належать певному набору, або пошуку оптимального шляху (траєкторії, послідовності дій) і т.д..

В наш час отримує все більш широке визнання точка зору, відповідно до якої мозок людини (і тварин) являє собою саме аналоговий пристрій, що навчається. З експериментів, наприклад, відомо, що процес навчання в людини (і тварин) супроводжується встановленням нових синаптичних контактів між нейронами й модифікацією вже наявних синаптичних зв'язків. Установлено, що пам'ять не локалізована в окремих нейронах або невеликих групах нервових клітин. Зразки, що зберігаються в пам'яті, не губляться, а лише начебто тьмяніють при ушкодженнях окремих ділянок головного мозку.

Основний вид діяльності в людини й вищих тварин - це операції із семантичними структурами: їхнє розпізнавання, генерація, передача, перетворення й порівняння. За словами М. Мінського, «задовго до того як наші предки навчилися розмовляти, у них уже виникли спеціальні механізми мозку для уявлення об'єктів, розходжень і причин; ці механізми пізніше лягли в основу нашої мови (і граматики в тому числі)».

Всі необхідні операції із семантичними структурами повинні здійснюватися в мозку як динамічні процеси в складній розподіленій нелінійній системі. Мозок є середовищем, де семантичні структури "живуть своїм життям": еволюціонують, взаємодіють і конкурують між собою.

Всі ці питання привертають увагу насамперед через можливе практичне застосування. Не очікуючи повного з'ясування всіх питань, що відносяться до роботи мозку, можна ставити завдання побудови таких пристроїв для обробки інформації, у яких були б втілені принципи роботи мозку.

Головна тенденція в розвитку сучасної обчислювальної техніки полягає в переході до використання розподілених систем, які утворені з логічних елементів з досить простою внутрішньою структурою. Великі надії тут зв'язують із молекулярною мікроелектронікою. Сучасний рівень розвитку технології дозволяє створювати схеми із розмірами порядку розмірів полімерної молекули. Розробляються методи масового хімічного синтезу таких молекулярних елементів і способи їхнього сполучення в мережі на основі механізмів самозборки.

Однак, навіть якщо будуть остаточно вирішені проблеми технологічного характеру, на шляху до створення молекулярного комп'ютера залишається кілька принципових теоретичних проблем.

Очевидно, що пристрій молекулярних розмірів не може працювати як традиційна ЕОМ з послідовним виконанням операцій. На молекулярному рівні неможливо позбутися локальних дефектів структури, обумовлених домішками й ''дислокаціями", а також від впливу теплових флуктуацій. Все це вимагає використати схемотехніку з великою стійкістю від локальних ушкоджень. Крім того, як відзначалося вище, сам по собі послідовний характер виконання операцій уже накладає значні обмеження на швидкодію ЕОМ.

Тому молекулярний комп'ютер повинен бути заснований на принципі паралельних обчислень. З декількох сотень або тисяч молекулярних елементів можна формувати блоки, які виконуватимуть роль окремих примітивних процесорів обробки інформації, або клітинних автоматів. Мережа з таких блоків, зв'язаних між собою, формує розподілене обчислювальне середовище.

Основні труднощі, що виникають на цьому шляху, - це "криза програмування". Чим менші розміри окремих блоків і чим щільніше їхнє розміщення, тим складніше програмувати роботу такого комп'ютера. Лише в найпростіших випадках, при прямій аналоговій імітації процесів з локальними взаємодіями, що протікають в однорідних умовах, або при первинній найпростішій обробці зображень, всі елементи мережі повинні виконувати ідентичні інструкції. У наш час неможливо створити такий єдиний програмний блок, що видавав би індивідуальні інструкції для кожного примітивного процесора з молекулярними розмірами.

Вихід тут полягає у створенні систем, які були б здатні до самонавчання. У таких розподілених системах на елементному рівні жорстко запрограмована лише здатність до навчання. Пристосування подібної обчислювальної мережі до рішення конкретних завдань досягається потім у процесі індивідуального її навчання або "тренування". Всі розроблені до теперішнього часу моделі мереж, що здатні до навчання, у тій або іншій мірі засновані на спробах імітації процесів у нейронних мережах мозку. У зв'язку із цим стосовно розроблювального нового покоління обчислювальної техніки, що широко використовує принципи навчання, часто застосовують терміни "нейрокомп’ютер" або "біокомп’ютер".

Хоча найбільш адекватною базою для майбутніх нейрокомп’ютеров є молекулярна електроніка, це не виключає створення обчислювальних мереж, що навчаються, на основі традиційної напівпровідникової плівкової технології або оптоелектроніки.

Висновок

У роботі розглянуті питання, що стосуються розвитку уявлень про фізику відкритих систем, розглянуто основні галузі застосування фізики відкритих систем до аналізу складних рухомих систем, а саме атмосферних явищ, турбулентних та конвективних процесів в рідинах та атмосфері, коливних та авто коливних процесів.

Фізика відкритих систем також займається вивченням методів обробки інформації та створенням систем штучного інтелекту, самонавчаючих систем та нейронних систем обробки інформації, що являється важливим етапом у створенні комп’ютерних систем нового покоління. У майбутньому ми станемо свідками розширення застосування фізики відкритих систем у багатьох галузях життя.

Список використаної літератури.

1. Ю.Л. Климентович. Введение в физику открытых систем. Соросовский образовательный журнал, №8, 1996, с. 109 – 116.

2. Ю.Л. Климентович.Критерии относительной упорядоченности открытых систем. Успехи физических наук. Т. 166, 311, 1996, 1231 – 1243.

3. В. С. Анищенко Динамические системы. Соросовский образовательный журнал, №2, 1994, с. 87 – 92.

4. С.П.Кузнецов Динамический хаос. М.: Наука. 2001, 297 с.

5. Р. М. Кроновер Фракталы и хаос в динамических системах. Основы теории. Пер. с англ. М.: Постмаркет, 2000, 352 с.

6. А.Ю.Лоскутов, А.С.Михайлов Введение в синергетику. М.: Наука, 1990, 272 с.

7. И.Пригожин, И. Стенгерс Порядок из хаоса. Пер. с англ. М.: Прогресс, 1989, 431 с.

8. А.Л.Эфрос Физика и геометрия беспорядка. Библиотека «Квант». М.: Наука, 1982, 265 с.