|
2.2.2 Параметры и характеристики
Остаточное давление и некоторые другие параметры механических насосов с масляным уплотнением в значительной мере определяются свойствами рабочей жидкости (залитого в насос масла). Как газы, так и конденсирующиеся пары, создающие обратный поток, попадают на вход насоса из циркулирующего в нем масла. Перед поступлением в камеру насоса масло некоторое время находится в маслорезервуаре, где подвергается воздействию атмосферного воздуха и поглощает газы. При поступлении масла в рабочую камеру поглощенные ранее газы выделяются из пленки масла и поступают на вход насоса.
У одноступенчатых насосов с масляным уплотнением давление остаточных газов составляет обычно (2,7—6,6)×10
У насосов с масляным уплотнением давление остаточных газов в основном определяется качеством изготовления.
Остаточное давление насосов измеряют с помощью манометра, присоединенного к заглушке (или к камере небольшого объема) на впускном патрубке насоса. При измерении давления остаточных газов манометр обычно защищают ловушкой, охлаждаемой жидким азотом.
Полное остаточное давление насоса зависит от состава (наличия летучих фракций) и состояния (в первую очередь — от температуры) рабочей жидкости. При повышении температуры масла наблюдается повышение как полного остаточного давления насоса, так и давления остаточных газов.
После запуска холодного насоса установившаяся температура масла (50—70° С) достигается через 2—З ч в зависимости от размеров насоса.
Быстрота действия S
Геометрическая быстрота действия S
где n — скорость вращения, об/мин.
В пластинчато-роторных насосах рабочая камера состоит из ряда ячеек объемом V
Истинная быстрота действия S
В связи с отсутствием заметного перетекания газа с выхода на вход в рабочей камере быстрота действия насосов с масляным уплотнением практически не зависит от рода откачиваемого газа, так как разница в величине проводимости входных коммуникаций по разным газам очень мало сказывается на быстроте действия насоса.
При неизменной проводимости входных коммуникаций быстрота действия любого насоса при произвольном впускном давлении р
где P
S
В насосах с масляным уплотнением при впускных давлениях ниже 10² - 10 Па (~ 1—0,1 мм рт. ст.) проводимость входных коммуникаций заметно уменьшается, в то же время уравнение (3), учитывающее влияние на быстроту действия только обратного потока, не учитывает уменьшения проводимости входных коммуникаций; поэтому применительно к этим насосам уравнение (3) в области низких давлений может использоваться только для грубых оценок быстроты действия.
Для точных расчетов, связанных с использованием значений быстроты действия в области низких давлений, не обходимо пользоваться экспериментальными зависимостями быстроты действия от впускного давления.
Для насосов с масляным уплотнением такие измерения проводят в области давлений от ~10³ Па (несколько мм рт. ст.) до p
Мощность, потребляемая насосами с масляным уплотнением, затрачивается на преодоление трения в механизме насоса (мощность трения или мощность потерь) и на процесс перемещения и сжатия газа (индикаторная мощность.)
2.3 Диффузионный насос
Диффузионные насосы предназначены для работы в области высокого и сверх-высокого вакуума, т. е. при давлениях ниже 10
Отличительной особенностью характеристики диффузионных насосов является постоянство быстро ты действия в рабочем диапазоне давлений, обусловленное сохранением молекулярного режима течения газа в районе первого сопла.
Конструкции паромасляных диффузионных насосов имеют ряд особенностей, обусловленных недостатками масел, используемых в качестве рабочих жидкостей. Это прежде всего устройства, обеспечивающие фракционирование (т. е. разделение на фракции) неоднородных масел, причем тяжелые фракции (с низким давлением насыщенного пара) направляются в сопло первой (высоковакуумной) ступени, чем обеспечивается низкое остаточное давление и высокое быстродействие насоса в целом, а легкие фракции (с высоким давлением насыщенного пара) направляются в сопло последней ступени, обеспечивая высокое выпускное давление. Насосы с таким устройством называются фракционирующими или разгоночными. На рисунке 2.5,а показано устройство металлического высоковакуумного разгоночного диффузионного насоса Н-5Т. Сварной корпус 1 насоса выполнен из мало углеродистой стали с наваренной на него рубашкой водяного охлаждения, паропровод 2 с двумя зонтичными соплами изготовлен из алюминия; последней выходной ступенью является эжектор З.
Рисунок 2.5 - Паромасляный насос Н-5Т (а) и устройство и действие лабиринтных колец для фракционирования масла (б): 1- корпус; 2 — паропровод; З — эжекторная ступень; 4 — ловушка для паров масла; 5 — электронагреватель; 6 — лабиринтные кольца.
Фракционирование масла, стекающего в кипятильник с периферии по стенке корпуса, осуществляется с помощью лабиринтных колец, удлиняющих путь масла (рисунок 2.5,б) до поступления в центральную зону кипятильника, откуда питается паром высоковакуумное сопло, так что легкие фракции масла успевают испариться на периферии кипятильника, откуда они поступают во второе зонтичное и эжекторное сопла насоса.
Остаточное давление пароструйного насоса в значительной мере определяется степенью фракционирования масла и содержанием газов в масле, стекающем в кипятильник, так как чем лучше обезгажено масло, тем меньше газов заносится паровой струей на впуск насоса. Лабиринтные кольца, показанные на рисунке 2.5, не прилегают плотно к днищу кипятильника, в связи с чем не обеспечивают достаточного фракционирования масла.
Проведенное рассмотрение показывает, что характеристики паромасляных насосов (диффузионных и бустерных) определяются как конструкцией насоса, так и родом рабочей жидкости.
Основные характеристики пароструйных насосов существенно зависят от молекулярной массы откачиваемого газа, что связано с большей противодиффузией легких газов (водород, гелий) через паровую струю по сравнению с тяжелыми (аргон, азот, кислород).
Теоретическая быстрота действия S