Входные токи ОУ – это токи баз или затворов транзисторов входного каскада. Соответственно, в ОУ на полевых транзисторах входные токи будут меньшим. Типичная величина входного тока составляет величину порядка 0,1 … 1 нА (для схем ОУ с входным каскадом на биполярных транзисторах) и 1 пА (для схем ОУ с полевыми транзисторами на входе). У ОУ с полевыми транзисторами разность входных токов практически не отличается от величины самих входных токов. Это обусловлено тем, что в связи с незначительностью токов затворов полевых транзисторов, как сами входные токи, так и их разность соизмеримы с токами утечек, которые зависят от качества монтажа и состояния поверхности корпуса транзистора. Поэтому для ОУ на полевых транзисторах не эффективен предложенный в разделе 6.4 метод снижения погрешности за счет обеспечения равенства сопротивлений резисторов во входных цепях.
Все вышеперечисленные параметры входят в эквивалентную схему, характеризующую вход ОУ. Она приведена на рисунке 7.3.
Рисунок 7.3. Эквивалентная схема замещения входной цепи ОУ
Широкое и разноплановое использование операционных усилителей обусловило большое разнообразие его характеристик и параметров. Приведем некоторые из них.
Для питания ОУ необходимо использовать двуполярные источники питания. Типовое значение напряжения этих источников – ±15 В, однако большинство современных ОУ могут работать в широком диапазоне напряжений питания ±6 … 18 В. Существуют также ОУ, работающие как при очень низких напряжениях – до ±1,2 В, так и при весьма больших – до ±48 В. Некоторые ОУ (обычно специализированные) используют однополярный источник питания.
При отсутствии двуполярного источника питания или при нецелесообразности его использования (например, в переносной аппаратуре) можно с помощью дополнительных схем обеспечить работу ОУ одного источника питания. На рисунке 7.4 приведены упрощенные варианты подачи питающих напряжений на ОУ при использовании двух и одного источника питания.
Рисунок 7.4. Подача питающих напряжений на ОУ
Наиболее распространенным является питание от двух симметричных источников с номинальным (типовым) напряжением. Однако на каждом из источников может быть установлено напряжение в пределах, допустимых для используемого типа ОУ. При питании от одного источника величина его напряжения должна лежать в диапазоне:
U+мин + U–мин£ Еп£U+мак + U–мак, (7.2)
где U+мин, U–мин, U+мак, U–мак – минимальные и максимальные значения питания по положительному и отрицательному источнику, указанные в технических условиях на используемый ОУ.
Амплитудная характеристика ОУ при симметричном питании приведена на рисунке 7.4.
Рисунок 7.4. Амплитудная характеристика
Кривая А соответствует подаче напряжения на инвертирующий вход при заземленном прямом, В – на неинвертирующий. Реальные кривые зачатую несимметричны. Напряжение насыщенияобычно на 1 … 2 В меньше, чем напряжение источника питания. В
Выходное сопротивление ОУ представляет собой собственно внутреннее сопротивление ОУ без обратной связи. Величина выходного сопротивления определяет максимальный выходной ток ОУ, поэтому эти две величины взаимосвязаны и часто в параметрах ОУ приводится только один из них (чаще приводится максимально допустимый выходной ток). Типичное значение выходного сопротивления – 10…1000 Ом, а выходного тока – 10 ... 20мА. Иногда в параметрах ОУ приводится значение минимального сопротивления нагрузки, по которому можно также определить выходной ток, зная максимально допустимое напряжение на выходе:
. (7.3)Превышение выходного тока (или, что тоже самое, чрезмерное уменьшение сопротивления нагрузки) может вывести некоторые ОУ из строя. Однако подавляющее большинство современных ОУ имеет внутреннюю защиту оконечного каскада от перегрузок по току. Такие ОУ выдерживают короткие замыкания выхода ОУ не только на землю, но и на источники питания ОУ.
В технических условиях обычно указываются предельные значения входного дифференциального и синфазного напряжения, превышение которых может вызвать необратимые изменения во входных цепях усилителя.
Несколько параметров определяют «скоростные» свойства ОУ.
Скорость нарастания выходного напряжения ОУ показывает, как быстро может изменяться выходной сигнал. Этот параметр тесно связан с АЧХ ОУ – для более высокочастотных усилителей скорость нарастания увеличивается. Типичное значение этой величины равно 1 … 100 В/мкс.
Время установления выходного напряжения –время, в течение которого выходное напряжение изменяется от уровня 0,1 до уровня 0,9 от установившегося значения.
Время восстановления – время с момента снятия входного напряжения до момента, начиная с которого выходное напряжение не будет превышать уровня 0,1 от установившегося значения после пребывания ОУ в режиме насыщения.
В настоящее время промышленность выпускает сотни типов ОУ. Все они в первом приближении соответствуют идеальному ОУ – имеют очень большой коэффициент усиления, широкую полосу пропускания, большое входное сопротивление и т.д. Все ОУ, в принципе, взаимозаменяемы, это значит, что в типовых схемах усилителей, генераторов, фильтров и т.д. в подавляющем большинстве случаев можно использовать любые ОУ.
Однако при проектировании специализированных электронных схем (например, высокочастотных, высокостабильных, миниатюрных и т.п.) целесообразно использовать специализированные ОУ, в которых улучшены те или иные параметры. В связи с этим различают обычно следующие виды ОУ:
·ОУ общего назначения;
·Прецизионные, высокочастотные ОУ;
·Микромощные, потребляющие незначительные токи от источников питания, иногда такие ОУ называются программируемыми;
·Мощные ОУ, способные формировать сравнительно большие токи и напряжения.
Еще одним критерием сравнения ОУ является количество таких усилителей в одном корпусе (обычно один, два или четыре).
ОУ общего назначения предназначены для применения в аппаратуре, где нет необходимости в выполнении каких-либо специальных условий или требований. Такие ОУ имеют низкую стоимость, широкий диапазон напряжения источников питания, нередко при их использовании не требуется никаких дополнительных элементов, кроме источников питания, входных и выходных цепей. Очень часто такие ОУ имеют защиту входных и выходных цепей и внутреннюю частотную коррекцию, обеспечивающую работу ОУ во всех режимах. Частотный диапазон таких ОУ не очень большой – единицы, десятки МГц.
Прецизионные, высокочастотные ОУ характеризуются малыми входными погрешностями: низким уровнем входного напряжения сдвига и его дрейфа и незначительной величиной входного тока сдвига. Нередко такие ОУ имеют низкий уровень шумов, сравнительно большой дифференциальный коэффициент усиления и коэффициент ослабления синфазной составляющей. Как правило, имеют невысокое быстродействие. К этой группе можно также отнести ОУ с предельно малыми значениями входных токов (так называемые электрометрические ОУ), входные каскады которых выполняются на полевых транзисторах. В некоторых случаях в прецизионных ОУ используются вспомогательные схемы для динамического измерения и компенсации входного напряжения сдвига. И, наконец, для получения экстремально низких значений погрешностей по напряжению и току используют ОУ, выполненные по схеме МДМ (модуляция-демодуляция).
Быстродействующие ОУпозволяют работать с быстроизменяющимися сигналами. Среди них различают широкополосные ОУ, которые применяются в высокочастотных усилителях, фильтрах, генераторах и т.п. Кроме того, известны ОУ с быстрым установлением входного напряжения, предназначенные, прежде всего, для обработки импульсных сигналов (импульсные усилители, устройства выборки-хранения, пиковые детекторы, цифроаналоговые преобразователи).
Микромощные ОУ применяются в тех случаях, когда определяющим требованием является потребление минимальной мощности от источника питания. Это в первую очередь характерно для переносной или бортовой аппаратуры, работающей от батарей или аккумуляторов. Потребляемый ток таких ОУ может составлять несколько микроампер, и нередко существует возможность изменять его величину внешними элементами.
Мощные ОУ позволяют получать на выходе сравнительно большие напряжения (до нескольких десятков вольт) и тока (до одного ампера). Это позволяет строить схемы на основе таких ОУ, которые работают на сравнительно низкоомные нагрузки (например: головные телефоны в бытовой звуковой аппаратуре, двигатели постоянного тока небольшой мощности и т.п.). Для предотвращения теплового разрушения при выделении большой мощности такие ОУ всегда имеют специальные выводы для крепления к теплопроводу.
Для нормального построения схемы на основе ОУ необходимо иметь точку (землю), напряжение которой равно половине суммарного напряжения источников питания ОУ. Получить такую точку можно с помощью простейшего резистивного делителя напряжения R1 и R2. Если выбрать сопротивления резисторов одинаковыми R1 = R2, то напряжения на резисторах (т.е. напряжения питания ОУ) будут равны UR1 = UR2 = EП / 2. Тогда выводы питания ОУ подключаются к однополярному источнику питания ЕП, а общая точка в схеме на основе ОУ подключается к средней точке резисторов R1 и R2. Проблема при таком подключении заключается в том, что земля схемы на основе ОУ не совпадает (по переменному току) с землей усилителя мощности, которая обычно соответствует одному из выводов источника питания. Поэтому эти две земли необходимо соединить между собой через конденсатор С, сопротивление которого на самой низкой частоте усиления fH должно быть достаточно малым (несколько десятков Ом).
[1] Полярность выходного напряжения зависит от реального направления входных токов.