Коли розмір поліатомної системи стає ще більшим, обчислення її електронної структури за допомогою комбінації атомних орбіталей стає неможливим. Але спрощення виникають, якщо досліджувана система є періодичним нескінченним кристалом. Електронна структура кристалічних твердих тіл може бути описана з використанням періодичних комбінацій атомних орбіталей (функції Блоха). У цій моделі використовується доскональна трансляційна симетрія кристалічної структури та нескінченні розміри (періодичні граничні умови); внеском від поверхні кристалу можна знехтувати. Електрони описуються суперпозицією плоских хвиль, поширених по всьому твердому тілу. На відміну від атомів та молекул, енергетична структура твердого тіла вже складається не з дискретних енергетичних рівнів, а з широких енергетичних смуг (зон), як показано на рис. 1.1.
Кожна зона може бути заповнена тільки обмеженим числом носіїв заряду. В дуже малих кристалах нанометрових розмірів (так званих нанокристалах) наближення трансляційної симетрії та нескінченного розміру кристалу вже є неприйнятними і, таким чином, ці системи не можуть описуватися такою ж моделлю, яка застосовується для твердого тіла. Ми можемо вважати, що дійсно електронна структура нанокристалу повинна бути проміжною між дискретними рівнями атомної системи та зонною структурою твердого тіла (як це показано на рис. 1.1). Як видно з рис. 1.1, енергетичні рівні нанокристалу дискретні, їх густина є більшою, а відстань між ними є меншою, ніж для відповідних рівнів одного атому або малого атомного кластеру. Завдяки дискретним енергетичним рівням такі структури називають квантовими точками. Концепцію енергетичних зон та забороненої зони все ще можна використовувати. Найвищі зайняті атомні рівні атомних (або іонних) груп взаємодіють одні з іншими, утворюючи валентну зону нанокристалу. Аналогічно найнижчі незайняті рівні комбінуються, утворюючи валентну зону нанокристалу. Енергетичний проміжок (щілина) між валентною зоною та зоною провідності дає заборонену зону.
Рис. 1.1. Енергетичні рівні електронів в залежності від числа зв’язаних атомів.
При зв’язуванні великої кількості атомів дискретні рівні атомних орбіталей зливаються в енергетичні зони (тут показаний випадок напівпровідникового матеріалу). Таким чином, напівпровідникові нанокристали (квантові точки) можуть розглядатися як гібрид між малими молекулами та масивним матеріалом.
Розглянемо металеву квантову точку. Енергетичне розділення рівнів біля рівня Фермі є грубо пропорційне
1.2 Енергетичні рівні напівпровідникової квантової точки
Нижче детальніше розглянемо нульвимірне тверде тіло. Оскільки багато квантових ефектів краще виявляються у напівпровідниках порівняно з металами, розгляд буде сфокусовано на напівпровідниковому матеріалі. Модель вільного газу електронів не включає „природу” твердого тіла. Але з макроскопічної точки зору будемо розрізняти метали, напівпровідники та ізолятори. Модель газу вільних електронів досить добре описує випадок електронів у зоні провідності металів. З іншого боку, електрони в ізолюючому матеріалі погано описуються моделлю вільних електронів. Для того, щоб розширити модель вільних електронів на напівпровідникові матеріали було введено поняття нового носія заряду – дірки. Якщо один електрон з валентної зони збуджується у зону провідності, то „порожній” електронний стан у валентній зоні називають діркою. Деякі основні властивості напівпровідникових матеріалів можуть бути описані моделлю вільних електронів і вільних дірок. Енергетичні смуги для електронів та дірок розділені забороненою зоною (енергетичною щілиною). Дисперсійні залежності для енергії електронів та дірок у напівпровіднику є параболічними у першому наближенні. Ця апроксимація справедлива тільки для електронів (дірок), що займають рівні, які знаходяться на дні зони провідності та вершині валентної зони. Кожна парабола є квазінеперервним набором електронних (діркових) станів вздовж даного напрямку у
Слід очікувати, що енергетичні дисперсійні співвідношення все ще параболічні у квантовій точці. Але, оскільки у точці можуть існувати тільки дискретні енергетичні рівні, кожна з оригінальних параболічних смуг (характерних для масивного тіла) тут фрагментується в комбінацію точок.
Рис. 1.2.
Вільним носіям у твердому тілі властива параболічна дисперсійна залежність
Найнижча енергія для електрону у одновимірній потенціальній ямі є тут
Якщо ящик є сферою діаметром
Ефект квантового обмеження знову значний. Більш обмежені носії заряду призводять до більшого розділення між індивідуальними рівнями енергії, а також до більших значень нульової енергії. Якщо носії поміщені у сферу діаметром