Для реальных упругопластических сред характерны диаграммы механического поведения (диаграммы деформирования)
Рисунок 1
Возможными вариантами упрощенных диаграмм механического поведения являются диаграммы идеальной жесткопластической среды (рис.1,г) или жесткопластической среды с упрочнением (рис. 1, д), причем для двух последних случаев характерно отсутствие упругого участка (упругими деформациями по сравнению с пластическими пренебрегают).
Модель упругопластической среды является сложной не только по формальному признаку (принимаются во внимание свойства упругости и пластичности), но и с точки зрения уровня сложности математического описания. Отметим, что в случае малых деформаций (превышающих упругие, но соизмеримых с ними) модель упругопластической среды хорошо описывается деформационной теорией пластичности (теория малых упругопластических деформаций). При больших (конечных) деформациях для описания поведения упругопластических сред более предпочтительна теория пластического течения.
2.2 Постановка задач в механики сплошных сред
Прикладное значение механики сплошных сред заключается в том, что она создает фундамент для физико-математического моделирования процессов взаимодействия деформируемых тел и сред. С помощью формулируемых в механике сплошных сред уравнений и соотношений удается составить замкнутую систему уравнений, решение которых позволяет исследовать поведение деформируемых сред и получать информацию о параметрах их движения и состояния. В настоящее время именно физико-математическое моделирование с позиций механики сплошных сред является наиболее мощным инструментом расчетно-теоретического исследования функционирования различных технических объектов, как существующих, так и проектируемых. В качестве примеров прикладных задач, необходимость решения которых возникает при изучении функционирования газодинамических импульсных устройств, можно указать задачи обтекания тел вращения воздушным потоком (рис. 2, а), проникания тел вращения в плотные и прочные среды (рис. 2, б, в), метания металлических облицовок продуктами детонации взрывчатого вещества (рис. 2, г), схлопывания конических металлических облицовок под действием приложенного давления с формированием кумулятивной струи (рис. 2, д) и т.п.
Однако решению задачи обязательно предшествует весьма важный этап формализации рассматриваемого физического процесса: его описание в виде соответствующей системы
Рисунок 2
уравнений, соотношений и определенных условий, т.е. решению задачи предшествует так называемая постановка задачи или же формулировка физико-математической модели изучаемого процесса взаимодействия деформируемых тел или сред. Далее приведем общие принципы постановки задач механики сплошных сред с различными физико-механическими свойствами и последовательно проанализируем особенности постановки задач механики идеальной и вязкой жидкостей, упругой и упругопластической сред. При этом основное внимание уделим этапам составления замкнутой системы исходных уравнений, получению системы разрешающих уравнений и различных частных ее видов, особенностям задания граничных условий. Постановку задачи механики упругопластической среды рассмотрим в полном объеме на примере процесса проникания металлического тела в металлическую преграду.
Постановка задачи механики сплошных сред заключается в составлении такой замкнутой системы уравнений и соотношений, которая бы описывала движения и состояние деформируемых сред с учетом их физико–механических свойств, действия внешних сил, тепловых и других факторов и позволяла определять зависимости характеризующих движение и состояние физических величин от координат и времени
Постановка любой задачи механики сплошных сред включает следующие пять этапов:
— выбор системы отсчета и системы координат, по отношению к которым будет описываться движение материального континуума;
— выбор моделей сплошных сред для участвующих в исследуемом процессе реальных деформируемых сред;
— составление системы исходных уравнений для выбранных моделей и исследуемого процесса;
— выбор основных неизвестных характеристических функций и переход к так называемой системе разрешающих уравнений;
— формулировка начальных и граничных условий для решаемой задачи.
2.2.1 Выбор системы отсчета и системы координат. В большинстве случаев при постановке прикладных задач выбираются инерциальные системы отсчета, неподвижные относительно земной поверхности. Как известно, выбор такой системы отсчета позволяет использовать при математическом описании движения законы механики Ньютона, в частности уравнение движения (2.1.2), являющееся выражением второго закона Ньютона применительно к сплошным деформируемым средам. Например, для показанного (на рис. 2, б) случая проникания тела вращения в плотную среду в качестве точки отсчета удобно принять неподвижную относительно Земли точку 0 начала взаимодействия проникающего тела с плотной средой. В некоторых более редких случаях допустимо и более удобно использование неинерциальных систем отсчета. Например, при решении задачи расчета характеристик напряженно-деформированного состояния проникающего тела — оболочки вращения — и оценке его прочности удобнее связать систему отсчета с самим тормозящимся в процессе проникания телом. Однако в этом случае в соответствии с принципом Даламбера следует включить в число внешних сил объемные силы инерции, для чего необходимо предварительное определение ускорения проникающего тела.
Выбор конкретного вида системы координат
2.2.2 Выбор модели сплошной среды и составление системы исходных уравнений. Выбор модели сплошной среды для участвующей в исследуемом процессе реальной деформируемой среды базируется на анализе особенностей поведения этой среды в отношении сопротивления деформированию, на выделении основных факторов и игнорировании второстепенных. Этап выбора модели заканчивается определением конкретного вида физических соотношений (2.1.7), ближе всего соответствующих особенностям физико-механического поведения реальной деформируемой среды.
Например, при решении прикладной задачи проникания тела вращения в воду с относительно небольшой начальной скоростью взаимодействия