Смекни!
smekni.com

Теплофизический расчет шара (стр. 2 из 2)

Из уравнения:

видно, что относительная избыточная температура прямо пропорциональна критерию Pd, т. е. скорость нагревания окружающей среды непосредственно влияет на повышение температуры тела в любой его точке.

Ряд в решении быстро сходится, и поэтому для квазистационарного режима, определяемого условием Fo>Fo1, им можно пренебречь.

При Bi →∞ температура поверхности шара будет линейной функцией времени. решение для безразмерной температуры можно записать в виде:

С

делав оценку ряда для центра шара (r=0), решение можно записать как:

где


Используя эти уравнения можно найти количество членов ряда, необходимое для получения точного решения:

,

где К - количество членов ряда


Рис. 7.Зависимость суммы ряда от количества членов ряда

Таблица 7.

φ(0.01,K) 1.1016 0.8968 0.9523 0.9367 0.9408 0.9398 0.9400 0.9399 0.9400 0.94
φ(0.05,K) 0.7422 0.7000 0.7015 0.7016 0.7016 0.7016 0.7016 0.7016 0.7016 0.7016
φ(0.1,K) 0.4532 0.4473 0.4473 0.4473 0.4473 0.4473 0.4473 0.4473 0.4473 0.4473
φ(0.5,K) 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087

Можно получить график зависимости величины суммы ряда для различных значений числа Фурье от количества членов ряда(Рис. 7). А также составить таблицу значений величины суммы ряда (табл. 7).

Проанализировав полученные решения можно сделать вывод, что для получения точного значения безразмерной температуры, можно брать только один член ряда, при условии Fo>0.1.

Определяем удельный расход тепла необходимый для нагрева шара из стали и резины, используя уравнение:


Рис. 8. Сравнение удельных расходов

Для удобства сравнения, величины расхода для обоих шаров, построены на одном графике зависимости удельного расхода от времени (Рис. 8). Q1 - удельный расход тепла, необходимый для нагрева шара из стали, Q2 - удельный расход тепла, необходимый для нагрева шара из резины.

Вывод

Кривая, отображающая расход необходимый для нагрева стального шара, располагается ниже кривой шара из резины, из-за того, что сталь имеет гораздо меньшую удельную теплоемкость, чем резина (теплоемкость резины почти в 3 раза выше теплоемкости стали). А так как удельная теплоемкость численно равна количеству теплоты, которое необходимо подвести к телу, чтобы повысить его температуру на 1 градус, то для нагрева стального шара потребуется гораздо меньшее количество тепла. Кроме того, коэффициент теплопроводности стали больше коэффициента теплопроводности резины почти в 280 раз, а так как коэффициента теплопроводности характеризует способность вещества проводить теплоту, следовательно стальной шар будет прогреваться по толщине гораздо быстрее, что уменьшит общие затраты передаваемого, телу тепла.

Список литературы

1. Лыков А. В. Теория теплопроводности. М., 2002

2. Исаченко В. П., Осипова В. А., Сукомел А. С. Теплопередача. М., 1995

3. Цой П. В. Методы расчета задач тепломассопереноса. М., 1994