Рис. 6. График спектра фаз
Изменение периода следования импульсов Т приводит к сгущению (при увеличении) или разряжению (при уменьшении) спектральных линий.
Изменение длительности
Спектр амплитуд позволяет наглядно судить о соотношении между амплитудами гармоник и о полосе частот, в пределах которой расположены энергетически значительные частотные составляющие.
Для периодического колебания
Кроме того, доказано, что средняя мощность периодического колебания равна сумме средних мощностей составляющих гармоник:
Это равенство называют равенством Парсеваля. Сопоставляя квадраты амплитуд гармоник, можно судить о распределении общей мощности периодического колебания по диапазону частот, а, следовательно, строить радиотехнические устройства, ограничивая спектр передаваемого колебания требуемым числом спектральных составляющих, тем самым уменьшая частотный диапазон передаваемых сигналов. Обычно спектр ограничивают частотой, на которой сумма мощностей постоянной составляющей и вошедших в этот диапазон гармоник составляет не менее 90 % полной средней мощности колебания.
Анализ периодических колебаний в электрических цепях
В основу анализа линейных электрических цепей, находящихся под воздействием периодических негармонических колебаний, лежит принцип наложения. Его суть применительно к негармоническим воздействиям сводится к разложению негармонического периодического колебания в одну из форм ряда Фурье и определения реакции цепи от каждой гармоники в отдельности. Результирующая реакция находится как сумма полученных частных реакций.
Анализ проведем на примере. Пусть ко входу последовательной RC-цепи (рис. 7) подведено воздействие в виде периодической последовательности видеоимпульсов с амплитудой А = Е и скважностью
Рис. 7
Требуется определить реакцию – напряжение на элементе емкости
На вход цепи поступает периодическое колебание, разложение которого в ряд Фурье дает следующий результат:
Из ряда видно, что в составе разложения отсутствуют гармоники с четными номерами, так как скважность последовательности импульсов равна 2. Ограничимся первыми тремя членами разложения. Приложенное напряжение содержит постоянную составляющую
Комплексное действующее напряжение от первой гармоники будет равно:
Аналогично находим напряжение на емкости от 3-й гармоники
Теперь можно записать мгновенное значение напряжения на емкости в виде ряда:
Действующее значение напряжения определяем, как
Частотный состав непериодического колебания
От периодического колебания к непериодическому можно просто перейти, если не изменяя формы импульса безгранично увеличивать период его следования, что, в свою очередь, приведет к бесконечно близкому расположению друг к другу спектральных составляющих, а значения их амплитуд становятся бесконечно малыми. Однако начальные фазы этих составляющих таковы, что сумма бесконечно большого числа гармонических колебаний бесконечно малых амплитуд отличается от нуля и равна функции только там, где существует импульс. Поэтому понятие спектра амплитуд для непериодического колебания не имеет смысла, и его заменяют, используя прямое и обратное преобразования Фурье.
Известно, что функция, удовлетворяющая заданным условиям, может быть представлена интегралом Фурье (обратное преобразование Фурье)
Используя прямое преобразование Фурье, приходим к интегралу
Функция
В качестве примера рассмотрим колебание, описываемое экспоненциальной функцией
Найдем спектральную плотность:
Особенностью комплексного спектра является его распространение, как на положительную, так и на отрицательную области частот. Графики нормированного амплитудного и фазового спектров представлены на рисунке 8.
а б
Рис. 8. Спектральная плотность экспоненциального видеоимпульса:
а – нормированный амплитудный спектр; б – фазовый спектр
Распределение энергии в спектре непериодического колебания
Пусть непериодическое колебание описывается функцией
Проинтегрируем это выражение по переменной
В этом выражении
где
Следовательно,
Произведение двух сопряженных комплексных величин равно квадрату модуля одной из них, поэтому
Так как левая часть равенства определяет энергию колебания
есть ни что иное, как энергия колебания, приходящаяся на один радиан полосы частот для текущей частоты w.
Иными словами,
Энергетически значимые участки спектра расположены в тех частотных полосах, в которых значение спектральной плотности
Пример. Определить спектральную плотность энергии прямоугольного видеоимпульса с параметрами: длительность
На основании формулы прямого преобразования Фурье найдем спектральную плотность амплитуд
Спектральную плотность энергии легко определить путем возведения в квадрат спектральной плотности амплитуд: