Теория промежуточного состояния была разработана Л.Д.Ландау. согласно этой теории в интервале магнитных полей с индукцией В1 < B0 < Bк (В1 - индукция внешнего магнитного поля, в тот момент, когда в каком-нибудь месте поверхности поле, достигает значение индукции Вк ). Сверхпроводящие и нормальные области существуют, образуя совокупности чередующихся между собой зон разной электропроводности. Идеализированная картина такого состояния для шара изображена на рисунке 12,а. Реальная картина намного сложнее. Структура промежуточного состояния, полученная при исследовании оловянного шара, показана на рисунке 12,б (сверхпроводящие области заштрихованы). Соотношение между количествами S- и N- областей непрерывно меняется. С ростом поля сверхпроводящая фаза “тает” за счет роста N– областей и при индукции В = Вк исчезает полностью. И все это связано с образованием границ и их исчезновением между S- и N- областями. А образование всякой поверхности раздела между двумя различными состояниями должно быть связано с дополнительной энергией. Эта поверхностная энергия играет весьма существенную роль и является важным фактором. От неё, в частности зависит тип сверхпроводника.
На рисунке 13 схематически показана граница между нормальной и сверхпроводящими областями. В нормальной области слева магнитное поле равно критическому (или больше). На границе нет резкого перехода от полнолностью нормального к полностью сверхпроводящему. Магнитное поле проникает на расстояние l в глубь сверхпроводящей области, и число сверхпроводящих электронов ns на единицу объема медленно повышается на расстояние равном некоторой характеристической длине, которую назвали длиной когерентности x.
Глубина проникновения l, имеет порядок 10-5…10-6см, длина когерентности для чистых металлов, по оценкам английского физика А.Пиппарда, должна быть порядка 10-4 см. Как показали советские физики В.Л.Гизбург и Л.Д.Ландау, поверхностная энергия будет положительной, ели отношение l\x меньше 1\Ö2 » 0,7. Этот случай реализуется у веществ, которые принято называть сверхпроводниками I рода.
3.4 Сверхпроводники I и II рода.
В сверхпроводниках первого рода поверхностная энергия положительна, то есть в нормальном состоянии выше, чем в сверхпроводящем. Если в толще такого материала возникает нормальная зона, то для границы между сверхпроводящей и нормальной фазами необходима затрата некоторой энергии. Это и объясняет причину расслоения сверхпроводника в промежуточном состоянии только на конечное число зон. При этом размеры S – и N – областей могут быть порядка миллиметра и их можно видеть даже невооруженным глазом, покрывая поверхность образца тонким магнитным и сверхпроводящим (диамагнитным) порошком. Магнитные порошки притягиваются полем и располагаются на выходе нормальных слоев, как показано на рисунке 14.
Теперь о сверхпроводниках второго рода. Промежуточное состояние соответствует ситуации, когда расслоение l < x. В неоднородных металлах при наличии примесей дело обстоит иначе. Соударение электронов с атомами примесей могут привести к снижению длины когерентности x. В таких материалах, как сплавы, длина когерентности оказывается меньше, и порой существенно – в сотни раз, чем глубина проникновения. Таким образом сверхпроводники второго рода – это сплавы и металлы с примесями. В сверхпроводниках второго рода поверхностная энергия отрицательна (l < x), поэтому создание границы раздела между фазами связано с освобождением некоторой энергии. Им энергетически выгодно пропустить в свой объем часть внешнего магнитного тока. Вещество при этом распадается на некую смесь из мелких сверхпроводящих и нормальных областей, границы которых параллельны направлению приложенного поля. Такое состояние принято называть смешанным.
3.5 Туннельные эффекты.
Туннельный эффект известен в физики давно. Это один из основных квантово- механических эффектов и разобраться в нем можно только подходя с помощи квантового описания происходящих событий.
Представьте себе горизонтальный желоб, по которому без трения скользит массивный шарик. Что произойдет, если шарик встретит на своем пути горку – участок с наклоном? По оси абсцисс отложена координата шарика х, а по оси ординат – его потенциальная энергия.
Теряя скорость, шарик покатиться в гору. Если его начальная кинетическая энергия была больше потенциальной максимальной энергии, то она благополучно перевалит через вершину горки шарик не сможет. На склоне найдется такая «точка поворота», где вся кинетическая энергия перейдет в потенциальную, и в соответствии с законом сохранения энергии шарик остановиться, а затем покатиться обратно. Шансов проникнуть за барьер (горку) у него абсолютно никаких.
А вот квантовая частица – электрон, на пути которого возникает преграда, в аналогичной ситуации все же как-то «умудряется» просочиться через барьер.
Попытаемся внести в этот абстрактный о до некоторой степени противоречащий нашему здравому смыслу ввести хотя бы некоторый элемент наглядности. Невозможность проникновения частицы (в нашем случае шарика) в область за барьером можно уподобить известному в оптике явлению полного внутреннего отражения. Согласно геометрической оптике лучи, подающие под углом больше предельного не проникают не проникают из среда оптически более плотной, в среду, оптически менее плотную.
Однако более подробное рассмотрение этого явления, основанная на законах не геометрической, а волновой оптике, приводит к возможности проникновения света во вторую среду. При этом если оптически более плотная среда представляет собой тонкую пластину, то световая волна проходит сквозь неё, несмотря на то что угол падения больше предельного.
А теперь вспомним о двойственной природе электрона. Частица в квантовой механике – это не совсем обычный шарик, пусть даже сверхмалых размеров, она даже обладает и волновыми двойствами, а волна, как мы выяснили, все же слегка проникает в запретную область, она как бы проверяет возможность проникновения в эту среду. При этом амплитуда затухает и тем быстрее, или говорят иначе, чем выше энергетический барьер.
Выходит , что какова бы не была энергия электрона и как бы ни был высок энергетический барьер, всегда есть отличная от нуля вероятность найти электрон внутри барьера, а если барьер не очень гладок, то и за барьером, по другую сторону. Тогда на обратной стороне барьера появляется конечная амплитуда, а согласно законам квантовой механики квадрат амплитуды и определяет вероятность того, что электрон будет здесь найден, если провести соответствующие эксперименты.
При этом электроны «пробивают» только строго горизонтальные туннели, на выходе из которых полная энергия частиц точно такая же, как и на входе. Тунелирование возможно только в том случае, если уровни, на которые переходят электроны, не заняты, и то в противном случае запрет Паули.
Итак, не имея достаточной энергии, чтобы перескочить через преграду, как бы «порывает» туннель в его недрах. Вероятность такого перехода, или как говорят физики, прозрачность энергии зависит от энергии электрона и очень сильно от ширины и высоты барьера. Туннельный эффект становиться наблюдаем лишь при толщинах барьеров, меньших 100 Å, так что у применяемых электрических изоляционных покрытий громадный запас прочности в отношении туннельного тока.
3.6 Эффект Джозефсона.
Здесь мы сталкиваемся с явлением квантование магнитного потока в сверхпроводниках. Ток исчезает всякий раз, когда переход содержит целое число квантов магнитного потока Ф0 , и достигает максимума соответственно при половинном, полуторном и другие значения магнитного потока Ф0. С ростом числа квантов ток в максимуме становиться все меньше.
Посмотрим теперь, что произойдет, если к джозефсонскому туннельному контакту приложить постоянную разность потенциалов. Для этого случая Джозефсон предсказал ещё более удивительные эффекты, а именно при появлении постоянного напряжения I на туннельном контакте через него должен идти высокочастотный переменный ток – это явление называют стационарным явлением Джозефсона.
Частоту переменного джозефсонского тока легко подсчитать. При наличии разности потенциалов между двумя сверхпроводниками энергия двух систем куперовских пар по обе стороны от перехода отличаются на величину DЕ = 2еU (2е – заряд пары). Именно такое количество может получить пар от источника напряжения при прохождении через диэлектрический слой. При протекании сверхпроводящего тока не требуется затрат в энергии, и полученная куперовской парой пропорция 2еU излучается в виде кванта с энергией hn = 2еU. Это излучение с частотой n = 2еU\h и было зарегистрировано в экспериментальных с контактами Джозефсона. Но излучать электромагнитные волны может только переменный ток – именно такой ток и течет через джозефсонский туннельный контакт.