На рисунке 2.1 представлена структурная схема алгоритма решения поставленной задачи.
Рис 2.1 Структурная схема алгоритма решения обратной задачи динамики спектральным методом
4. Практическая часть
Рассмотрим отдельный блок системы самонаведения, структурная схема которого представлена на рисунке 1.
Рис. 1. Структурная схема системы
Задан эталонный закон изменения угла
Рис. 2. График эталонного закона изменения угла
Задача формулируется следующим образом. Необходимо найти управление
5. Практическая часть
Данная задача относится к разряду неккоректных и мы будем решать её с применением оптимизационных методов.
Для решения данной задачи воспользуемся методом матричных операторов. В этом случае структурную схему можно представить в следующем виде (рис. 3).
Рис. 3. Структурная схема системы в операторной форме
В качестве ортонормированной системы использовалась система функций Уолша с удержанием
Спектральная характеристика сигнала
Решение поставленной задачи будем выполнять в следующие два этапа.
1. Поскольку известен эталонный выходной сигнал, то из уравнения
можно найти спектральную характеристику эталонного сигнала на выходе нелинейного элемента. Решая уравнение (1) относительно коэффициентов
График соответствующего сигнала представлен на рисунке 4.
Рис. 4. График сигнала, который необходимо получить на выходе нелинейного элемента
Однако на выходе нелинейного элемента можно получить сигнал, представленный на рисунке 5 (ниже показаны первые пять элементов спектральной характеристики).
Рис. 5. Реальный сигнал на выходе нелинейного элемента
Тогда из (1) находим эталонный сигнал на выходе, который может обеспечить данная система (рис. 6). Его спектральная характеристика:
Рис. 6. Графики требуемого эталонного сигнала и эталонного сигнала, который можно получить
2. В результате решения предыдущего этапа найдены спектральные характеристики (3) эталонного выходного сигнала, который может обеспечить данная система, и (2) эталонного сигнала, которой необходимо получить на входе нелинейного элемента.
Далее искомый сигнал
где
В результате можно для спектральной характеристики сигнала на входе нелинейного элемента записать следующую зависимость.
где
зависящая от неизвестных коэффициентов
исходную задачу синтеза входного сигнала можно свести к задаче поиска минимума функционала (7) на множестве допустимых значений коэффициентов
При решении задачи в качестве системы функций
Были получены следующие оптимальные значения искомых коэффициентов:
Значение функционала (7) в оптимальной точке:
Следовательно, входной сигнал имеет следующий вид:
На рисунке 7 представлен график сигнала
Рис. 7. График синтезируемого входного сигнала
На рисунке 8 представлены результаты анализа системы с использованием метода Рунге-Кутта для найденного входного сигнала и для сравнения приведены графики требуемого эталонного выходного сигнала и эталонного сигнала, который может обеспечить данная система.