Содержание
Введение…………………………….…………………………………..................2
1. Определение параметров и структуры объекта управления.….…………….3
2. Разработка алгоритма управления и расчёт параметров устройств управления……………………………………………………………………...…7
3. Моделирование процессов управления, определение и оценка показателей качества…………………………………………………………………………..16
4. Разработка принципиальной электрической схемы и выбор её элементов.23
Список литературы.………………………………………….………………..…39
Введение
На современном этапе, характеризующемся приоритетным развитием машиностроения и автоматизации производства, автоматизированный электропривод сформировался как самостоятельное научное направление, в значительной степени определяющее прогресс в области техники и технологии, связанных с механическим движением, получаемым путем преобразования электрической энергии. Этим объясняется большой интерес специалистов к новым разработкам в данной отрасли техники и к ее научным проблемам.
Четко определился объект научного направления – система, отвечающая за управляемое электромеханическое преобразование энергии и включающая два взаимодействующих канала – силовой, состоящий из участка электрической сети, электрического, электромеханического, механического преобразователей, технологического рабочего органа, и информационный канал. В рамках данного курсового проекта рассматривается разработка информационного канала.
1. Определение параметров и структуры объекта управления
В состав объекта управления входит двигатель постоянного тока независимого возбуждения
|
|
|
|
|
|
|
|
|
|
|
|
Данный ЭД предназначен для работы в широкорегулируемых электроприводах, соответствует
Номинальная угловая скорость вращения
Максимальная угловая скорость вращения:
Номинальный ток якоря:
Суммарное сопротивление якорной цепи:
Произведение постоянной машины на номинальный поток:
Постоянная времени якорной цепи:
Номинальный момент:
Номинальный ток обмотки возбуждения:
Исходя из высоты оси вращения
По рис. 4 [2, стр. 10]:
По рис. 2б [2, стр. 8]:
По табл. 2 [2, стр. 9] для класса изоляции
По табл. 3 [2, стр. 10] для
Окончательно получим:
По рис. 3 [2, стр. 9]:
Полюсное деление равно:
Число витков обмотки возбуждения [2, стр. 27]:
Номинальный магнитный поток:
Постоянная машины:
Коэффициент рассеяния [3, стр. 38]:
Индуктивность обмотки возбуждения:
Постоянная времени обмотки возбуждения:
Постоянная времени обмотки возбуждения:
Суммарный момент инерции механизма:
Так же объёкт управления содержит
Постоянная времени преобразователей равна:
Так как
2. Разработка алгоритма управления и расчёт параметров устройств управления
Объект управления описывается следующими уравнениями [3, стр.38-39]:
Выберем двухконтурную систему управления скорости с внутренним контуром потока (рис. 1).
Рис. 1. Двухконтурная система регулирования скорости.
Универсальная кривая намагничивания представлена на рис. 3.
Так как регулирование происходит изменением потока, минимальный поток будет при максимальной скорости:
Минимальный ток возбуждения (по рис. 3):
Рис. 3. Универсальная кривая намагничивания.
При этом коэффициент линеаризации кривой намагничивания лежит в диапазоне:
Максимальная постоянная времени потока:
Коэффициент форсирования тока возбуждения [4, стр. 559]:
Малая постоянная времени:
Желаемая передаточная функция замкнутого контура потока: