в) аппараты распределения энергии выше 1000 В:
Предельные падения напряжения при окисленных контактах допускаются до 300мВ.
В любом случае, падение напряжения на контактах должно быть меньше напряжения рекристаллизации. Кроме напряжения рекристаллизации, используется температура рекристаллизации. По установленной величине падения напряжения на коммутирующих контактах определяется превышение температуры в контактных площадках, полученное значение сопоставляется с ранее принятым при расчёте
12.11 Определение допустимого тока через коммутирующие контакты
Допустимый ток фактически характеризует возможности контактного узла на заданный режим работы с учётом принятого материала контактов, конструктивной формы контактной поверхности, принятого значения
Величина допустимого тока рассчитывается по формуле:
Полученное значение допустимого тока необходимо сопоставить с предельным током для контактного узла в соответствии с категорией применения аппаратов (ДС1, ДС2, АС1, АС2, АС3), а также с учётом режима коммутации (нормальный, редкий). В любом случае, должно выполняться условие:
Если это условие не выполняется или допустимый ток существенно больше предельного, то контактный узел спроектирован нерационально. Для определения рациональных параметров контактного узла необходимо все расчёты повторить, начиная с пересмотра выбора материала.
12.12 Определение величины тока сваривания контактов
12.12.1 Общий метод определения тока сваривания
Предполагают, что при протекании тока постоянной величины происходит нарастание температуры контактной площадки, близкой к температуре плавления по экспоненте, при этом предельный ток сваривания определяется по формуле:
где:
t1 – это предполагаемое время протекания предельного тока
Т – постоянная времени нагрева контактной площадки
Fэду – [1, стр. 49]
12.12.2 Расчёт начального тока сваривания контактов
Этот способ даёт значительные погрешности, применяется при небольших силах нажатия.
12.12.3 Определение тока сваривания по экспериментальным данным
Эта экспериментальная формула даёт хорошее совпадение расчётных и экспериментальных данных по
12.12.4 Определение тока сваривания по опытным данным
В соответствии с рекомендациями Буткевича:
где
Полученные значения тока сваривания сопоставляются между собой и для дальнейших расчётов принимают меньшее значение. Принятое это значение тока сваривания сопоставляется с возможным током к.з. при работе аппарата или с предельным током для соответствующей категории применения аппаратов, при этом должно выполняться условие:
12.13 Мероприятия по повышению устойчивости контактов против сваривания
12.13.1 Конструктивные мероприятия
а) повышение силы конечного контактного нажатия.
б) уменьшение вибрации контактов при включении и выключении.
в) ускорение процесса возрастания силы нажатия после замыкания контактов.
г) компенсация отбрасывающего давления электродинамических сил:
S1 – поперечное сечение контактной детали
S – сечение площади смятия:
Эта сила Fэду возникает в контактных площадках при замкнутых контактах, за счёт стягивания линий тока в контактных площадках.
д) изменение формы контактной поверхности.
Точечный контакт сваривается при меньших токах, чем линейный, а линейный контакт – при меньших токах, чем плоскостной.
е) разделение контактов на ряд параллельных.
Парные контакты свариваются при токах ≈ в два раза больше чем одинарных.
При этом распределение тока в контактах следует определять по формуле:
где
12.13.2 Повышение устойчивости за счёт рационального выбора материала
а) применение разнородных материалов для контактов;
б) использование металлокерамических контактов, содержащих графит;
в) использование мелкодисперсных металлокерамических контактов.
12.14 Износостойкость контактов
12.14.1 Общие положения
Износ контактов зависит от многих факторов и происходит при замыкании и размыкании.
Износостойкость зависит:
а) условия работы:
· род тока (постоянный, переменный)
· напряжение источника питания
· величина тока
· характер нагрузки (активная, слабо инд., сильно инд.)
· частота включений в час
· среда (воздух, масло, спец. газовая среда и др.)
б) конструкции аппарата:
· время коммутации
· вибрация контакта
· конструктивная форма контакта
· напряжённость магнитного поля в межконтактном промежутке (увеличение напряжения больше оптимального приводит к выбрасыванию мостика расплавленного металла ЭДУ и повышению износа)
· скорость движения контактов (скорость движения при включении и скорость движения при отключении)
Мерой износа контактов является уменьшение провала контактов (линейный износ), а также объём и масса удаляемого с контактной поверхности металла.
12.14.2 Расчётные зависимости для определения электрической износостойкости
Электрическая износостойкость или гарантируемое число коммутаций в общем случае определяется по формуле:
где