Смекни!
smekni.com

Проектирование электродвигателя (стр. 6 из 8)

Допускаемое контактное напряжение при максимальной нагрузке, не вызывающее остаточных деформаций или хрупкого разрушения поверхностного слоя sHPmax, зависит от способа химико-термической обработки зубчатого колеса и от характера изменения твердости по глубине зуба. Для зубьев, подвергнутых улучшению, принимают:

sHPmax1,2= 2,8sТ

тогда

sHPmax1= 2,8·690 =1932 МПа, sHPmax2= 2,8·540 =1512 МПа.

Проверка условия прочности:

sHmax≤ sHPmax1 → 553,312 МПа ≤ 1932 МПа – условие выполнено;

sHmax≤ sHPmax2 → 553,312 МПа ≤ 1512 МПа – условие выполнено.

13. Расчет зубьев на выносливость при изгибе

13.1. Определение расчетного изгибного напряжения

Расчетом определяют напряжение в опасном сечении на переходной поверхности зуба для каждого зубчатого колеса.

Выносливость зубьев, необходимая для предотвращения усталостного излома зубьев, устанавливают сопоставлением расчетного местного напряжения от изгиба в опасном сечении на переходной поверхности и допускаемого напряжения:

sF£sFP.

Расчетное местное напряжение при изгибе определяют по формуле, МПа:

sF =

×KF×YFS×Yβ×Yε

где FtF = 820,342– окружная сила на делительном цилиндре, Н;

bω = 39– рабочая ширина венца зубчатой передачи, мм;

m = 2,5– нормальный модуль, мм;

YFS– коэффициент, учитывающий форму зуба и концентрацию напряжений определяется по формуле:

,

где x1 = x2 = 0 – коэффициенты смещения;

zu1 = z1 / cos3β = 28/0,973 = 30,679 – эквивалентное число зубьев шестерни,

zu2 = z2 / cos3β = 69/0,973 = 75,602 – эквивалентное число зубьев колеса.

Тогда:

,

,

Yβ – коэффициент, учитывающий наклон зуба определяется по формуле:

,

Yε – коэффициент, учитывающий перекрытие зубьев;

где εβ– коэффициент осевого перекрытия (определен при расчете расчетного контактного напряжения), т.к. eb= 1,207 ³ 1,то

KF– коэффициент нагрузки принимают по формуле:

KF = KA×KFu×KFb×KFa,

где KA = 1– коэффициент, учитывающий внешнюю динамическую нагрузку (не учтенную в циклограмме нагружения);

KFu= 1,4– коэффициент, учитывающий динамическую нагрузку, возни­кающую в зацеплении до зоны резонанса определяется по таблице.

KFb = 1,07 – коэффициент, учитывающий неравномерность распределения на­грузки по длине контактных линий (по графику);

KFa – коэффициент, учитывающий распределение нагрузки между зубьями определяется в зависимости от значения εβ.

так как εβ =1,245> 1, то KFa определяется по следующей формуле:

,


где n – степень точности по нормам контакта (уже определена);

ea– коэффициент торцового перекрытия.

Таким образом:

KF = KA×KFu×KFb×KFa = 1×1,4×1,07×1 = 1,494.

Тогда:

sF1 =

×KF×YFS1×Yβ×Yε=
×1,494×3,9×0,858∙0,606 = 25,49 МПа,

sF2 =

×KF×YFS2×Yβ×Yε=
×1,494×3,645×0,0,858∙0,606 = 23,823 МПа.

13.2 Допускаемые напряжения в проверочном расчете на изгиб.

Допускаемым напряжением sFP определяются по формуле:

sFP =
×YN×Yδ×YR×YX ,

где sFlimb – предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа определяется по формуле:

sFlimb =s0Flimb×YT×Yz×Yg×Yd×YA ,

где s0Flimb – предел выносливости при отнулевом цикле изгиба,

для колес из стали марки 40Х, подверженных улучшению s0Flimb = 1,75ННВ МПа.


s0Flimb1 = 1,75*265 = 463,75МПа. s0Flimb2 = 1,75*250=437,5 МПа.

YT принимают YT1 = YT2 = 1, поскольку в технологии изготовления шестерни и колеса нет отступлений от примечаний к соответствующим табл. – коэффициент, учитывающий технологию изготовления;

Yz – коэффициент, учитывающий способ получения заготовки зубчатого колеса для поковки Yz1 = 1 и Yz2 = 1;

Yg– коэффициент, учитывающий влияние шлифования передней поверхности зуба Yg1 = Yg2 = 1, так как шлифование не используется;

Yd – коэффициент, учитывающий влияние деформационного упрочнения или электрохимической обработки переходной поверхности, Yd1 = Yd2 = 1, так как отсутствует деформационное упрочнение;

YA = 1– коэффициент, учитывающий влияние двустороннего приложения нагрузки так как одностороннее приложение нагрузки.

Тогда:

sFlimb1 =s0Flimb1×YT×Yz×Yg×Yd×YA = 463,75×1×1×1×1×1 = 463,75 МПа;

sFlimb2 =s0Flimb2×YT×Yz×Yg×Yd×YA= 437,5×1×1×1×1×1 = 437,5 МПа.

SF = 1,7 – коэффициент запаса прочности определяется в зависимости от способа термической и химико-термической обработки;

YN – коэффициент долговечности находится по формуле:

но не менее 1,

где qF – показатель степени;

NFlim – базовое число циклов перемены напряжений, NFlim= 4×106 циклов;

NК – суммарное число циклов перемены напряжений, уже определены:

NK1 = 1069∙106 циклов,

NK2 = 428∙106 циклов.

Так как

NK1 > NFlim = 4×106 иNK2 > NFlim, тоYN1 = YN2 =1.

Yδ – коэффициент, учитывающий градиент напряжения и чувствительность материала к концентрации напряжений находится в зависимости от значения модуля m по формуле:

Yδ = 1,082 – 0,172∙lgm = 1,082 – 0,172∙lg2,5= 1,014.

YR – коэффициент, учитывающий шероховатость переходной поверхности: при улучшенииYR1,2 = 1,2.

YX – коэффициент, учитывающий размеры зубчатого колеса определяется по формуле:

YX1 = 1,05 – 0,000125∙d1 = 1,05 – 0,000125×72,165 = 1,041,

YX2 = 1,05 – 0,000125∙d2 = 1,05 – 0,000125×177,835 = 1,028.

Таким образом:

МПа,

МПа.

Сопоставим расчетные и допускаемые напряжения на изгиб:


sF1 = 25,49 < sFP1 = 345,545,

sF2 =23,823 < sFP2 = 321,915.

Условие выполняется.

13.3 Расчет на прочность при изгибе максимальной нагрузкой

Прочность зубьев, необходимая для предотвращения остаточных де­формаций, хрупкого излома или образования первичных трещин в поверхностном слое, определяют сопоставлением расчетного (максимального местного) и допускаемого напряжений изгиба в опасном сечении при действии максималь­ной нагрузки:

sFmax £sFPmax.

Расчетное местное напряжение sFmax, определяют по формуле:

,

где КAS = 3 – коэффициент внешней динамической нагрузки при расчетах на прочность от максимальной нагрузки;

КA = 1 – коэффициент, учитывающий внешнюю динамическую нагрузку, (определен ранее);

Тмах / TF = Кпер = 1,45(исходные данные).

Таким образом:


МПа,

МПа.

Допускаемое напряжение sFPmax определяют раздельно для зубчатых колес (шестерни и колеса) по формуле:

,

где σFSt – предельное напряжение зубьев при изгибе максимальной нагрузкой, МПа; определяем по приближённой зависимости:

σFSt ≈ σFlimb×YNmax×KSt

где σFlimb – предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа;

σFlimb1 = 463,75 МПа σFlimb2 = 437,5 МПа

YNmax1,2 = 4 (т.к. qF = 6)– коэффициент, учитывающий влияние деформационного упрочнения.

KSt1,2 = 1.3 (т.к. qF = 6)– коэффициент, учитывающий различие между предельными напряжениями, определёнными при ударном, однократном нагружении и при числе ударных нагружений N = 103;

Тогда:

σFSt1 ≈ σFlim1×YNmax1×KSt1 = 463,75∙4∙1,3 = 2411,5МПа,