Смекни!
smekni.com

Проектирование ГРЭС (стр. 13 из 19)

Конструкция пластинчатого теплообменника содержит набор гофрированных пластин, изготовленных из коррозионно-стойкого материала, с каналами для двух жидкостей, участвующих в процессе теплообмена. Пакет пластин размещен между опорной и прижимной плитами и закреплен стяжными болтами. Каждая пластина снабжена прокладкой из термостойкой резины, уплотняющей соединение и направляющей различные потоки жидкостей в соответствующие каналы. Необходимое число пластин, их профиль и размер определяется в соответствии с расходами сред и их физико-химическими свойствами, температурной программой и допустимой потерей напора по горячей и холодной стороне.

Гофрированная поверхность пластин обеспечивает высокую степень турбулентности потоков и жесткость конструкции теплообменника. Размещение патрубков для ввода и отвода сред возможно как на опорной, так и на прижимной плитах. Пластины и прокладки изготавливают из материалов, стойких к обрабатываемой среде.

Жидкости, участвующие в процессе теплопередачи, через патрубки вводятся в теплообменник. Прокладки, установленные специальным образом, обеспечивают распределение жидкостей по соответствующим каналам, исключая возможность смешивания потоков. Тип гофров на пластинах и конфигурацию канала выбирают в соответствии с требуемой величиной свободного прохода между пластинами, обеспечивая оптимальные условия процесса теплообмена.

Когда пластины сжаты вместе в наборе, отверстия в углах представляют собой продолжительные туннели или трубы, ведущие к среде от входов в набор пластин, где они размещаются в узких проходах между пластинами.

Из-за положения прокладок на пластинах и альтернативного размещения соседних пластин, оба теплоносителя входят в альтернативные проходы. Например, горячий теплоноситель проходит между нечётными проходами, а холодный теплоноситель – между четными. Таким образом, среды вступают в контакт через тонкую металлическую перегородку, а для улучшения теплообмена течение сред осуществляется противотоком. Проходя через аппарат, горячая среда отдает определенное количество тепла тонкой перегородке, которая в свою очередь охлаждается холодной средой с противоположной стороны. В результате, температура горячего теплоносителя снижается, а холодного – повышается. Далее среды проходят подобные отверстия – туннели на другом конце пластин и выпускаются из теплообменника.

Произведем расчет площади теплообменной поверхности верхнего сетевого (ВС) и нижнего сетевого (НС) подогревателей. Конструктивная схема и общий вид подогревателя изображены на рисунке 6 графической части.

2.19.1 Расчет верхнего сетевого подогревателя

Тепловая нагрузка теплообменного аппарата, кДж,


, (2.142)

где

– расход сетевой воды через подогреватель (из расчета принципиальной тепловой схемы), кг/с;

– энтальпия сетевой воды на выходе из ВС (из расчета принципиальной тепловой схемы), кДж/кг;

– энтальпия сетевой воды на входе в ВС (из расчета принципиальной тепловой схемы), кДж/кг;

Площадь поверхности теплообмена,

,

(2.143)

где k=3000 – коэффициент теплопередачи,

;

– среднелогарифмический температурный напор, ºС.

(2.144)

где

и
- большая и меньшая разница температур, ºС;

(2.145)

(2.146)

По заводским данным выбираем теплообменник типа НН №43ТС –

с характеристиками, указанными в таблице 2.5

Таблица 2.5 – Характеристики теплообменника

Характеристики Численное значение
Ширина теплообменного аппарата, мм 770
Высота теплообменного аппарата, мм 1503
Максимальная длина теплообменного аппарата, мм 1527
Вес, кг 1644–1824
Рабочее давление, МПа 1,0
Испытуемое давление, МПа 1,3
Максимальная температура, ºС 150
Количество пластин, шт. 137 – 189
Максимальная площадь теплообмена,
86,0
Толщина пластины, мм 0,6
Тип рифления пластин ТК, ТL
Материал пластин нерж. сталь AISI 316
Материалпрокладок резина EPDM
Расположение патрубков на передней плите
Диаметр присоединений, мм 200
Количество / диаметр резьбовых стяжек 8 / М36
Номинальный диапазон расходов, т/ч 30 – 650
Номинальный диапазон мощностей, кВт 1000 – 20000

2.19.2 Расчет нижнего сетевого подогревателя

Тепловая нагрузка теплообменного аппарата по формуле (2.142), кДж,


Большая разница температур по формуле (2.145), ºС;

Меньшая разница температур по формуле (2.146), ºС;

Среднелогарифмический температурный напор по формуле (2.144), ºС;

Площадь поверхности теплообмена по формуле (2.143),

,

По заводским данным выбираем теплообменник типа НН №43ТС –

с характеристиками, указанными в таблице 2.6

Таблица 2.6 – Характеристики теплообменника

Характеристики Численное значение
Ширина теплообменного аппарата, мм 770
Высота теплообменного аппарата, мм 1503
Максимальная длина теплообменного аппарата, мм 1707
Вес, кг 1528–1630
Рабочее давление, МПа 1,6
Испытуемое давление, МПа 2,1
Максимальная температура, ºС 150
Количество пластин, шт. 196 – 231
Максимальная площадь теплообмена,
105,3
Толщина пластины, мм 0,6
Тип рифления пластин ТК, ТL
Материал пластин нерж. сталь AISI 316
Материалпрокладок резина EPDM
Расположение патрубков на передней плите
Диаметр присоединений, мм 200
Количество / диаметр резьбовых стяжек 8 / М36
Номинальный диапазон расходов, т/ч 30 – 650
Номинальный диапазон мощностей, кВт 1000 – 20000

2.20 Узел учета отпускаемой тепловой энергии

2.20.1 Характеристика тепломагистрали ГРЭС

Тепломагистраль ГРЭС служит для подачи теплоносителя (теплофикационной воды) в тепловые сети. Внутренний диаметр подающего и обратного трубопроводов

обеспечивает максимальный расход теплоносителя 429,7 т/ч при скорости
. Давление в подающем трубопроводе
, температура в подающем трубопроводе
, давление в обратном трубопроводе
, температура в обратном трубопроводе
. Материал трубопроводов – Сталь 3.

2.20.2 Выбор оборудования узла учета тепловой энергии и его характеристики

Для осуществления коммерческого учета расхода теплоносителя, его параметров и тепловой энергии в подающем и обратном трубопроводах тепломагистрали устанавливаются приборы учета. Узел учета тепловой энергии источника должен соответствовать «Правилам учета тепловой энергии и теплоносителя», 1995 г., «Правилам эксплуатации теплопотребляющих установок и тепловых сетей потребителей» и «Правилам техники безопасности при эксплуатации теплопотребляющих установок и тепловых сетей потребителей». В соответствии с «Правилами учета тепловой энергии и теплоносителя» в системах теплоснабжения приборами узла учета должны определяться следующие величины: