Во втором случае имеем большой тепловой поток в виде продувочной воды с температурой tк=40 оС в количестве 1252,5 кг/с или 4510 т/час с повышенным солесодержанием, которое необходимо каким-то образом утилизировать или непосредственно сбрасывать в канализацию. Надо отметить, что во второй схеме величина недогрева охлаждающей воды в конденсаторах ступеней мала, что негативно сказывается на степени конденсации паров.
Тепловая эффективность обоих схем, выраженная в виде удельного расхода теплоты dт, примерно одинаковая и в случае использования в качестве основного греющего пара - отработанного пара турбин приводов силового оборудования, не является определяющей величиной.
Основываясь на этих данных, принимаем к расчёту схему с тремя теплоотводящими ступенями. Её применение позволит значительно сократить расход воды на подпитку установки и продувочной воды, сбрасываемой в промливневую канализацию. Кроме того, за счёт более низкой температуры охлаждающей воды в последних ступенях удастся добиться более глубокого вакуума, более качественной конденсации пара и сократить площади поверхностей теплообмена конденсаторов.
2.3.10 Найдём температурный перепад в ступенях, как среднелогарифмический по формуле (3-93) [20] Dtсрi
2.3.10.1 Среднелогарифмический перепад в первой ступени Dtср1
|
|
2.3.10.3 Среднелогарифмический перепад в третей ступени Dtср3
|
2.3.10.4 Среднелогарифмический перепад в четвёртой ступени Dtср4
|
2.3.10.5 Среднелогарифмический температурный перепад в пятой ступени Dtср5
|
2.3.10.6 Среднелогарифмический перепад в шестой ступени Dtср6
|
2.3.10.7 Определим температурный перепад в седьмой ступени
|
где tр7=tв7=46 оС – температура рассола на выходе из седьмой ступени;
tр8=43 оС – температура рассола на выходе из конденсатора-пароохладителя восьмой ступени.
2.3.10.7.2 Температурный перепад между исходной водой и вторичным паром в седьмой ступени составляет Dtи.в.7
|
где tисх8=40,67 оС – температура исходной воды на выходе из восьмой ступени, вычисленная из условия равенства перепада температур по всем трём теплоотводящим ступеням Dи.в.=(tв7-tисх)/3=946-30)/3= 5,33 оС.
2.3.10.7.3 Среднелогарифмический температурный перепад между оборотной водой и вторичным паром составит Dtохл.7
|
2.3.10.7.4 Тогда средний температурный перепад в ступени составит Dtср7
|
2.3.10.8 Определим величину температурного перепада в восьмой ступени
|
где tк=40 оС – температура рассола на выходе из последней ступени.
2.3.10.8.2 Температурный перепад между исходной водой и вторичным паром в восьмой ступени составляет Dtи.в.8
|
где tисх9=35,33 оС – температура исходной воды на выходе из конденсатора девятой ступени.
|
2.3.10.8.4 Тогда средний температурный перепад в ступени составит Dtср8
Х.10.9 Определим величину температурного перепада в девятой ступени
|
2.3.10.9.1 Температурный перепад между исходной водой и вторичным паром в девятой ступени составляет Dtи.в.9
|
2.3.10.9.2 Среднелогарифмический температурный перепад между оборотной водой и вторичным паром составит Dtохл.9
2.3.10.9.3 Средний температурный перепад в ступени составляет Dtср9
|
|
|
2.3.10.10 Определим средний температурный перепад в конденсаторе паро-воздушной смеси из теплоотводящих ступеней Dtср”
|
|
где tSг.п.=101оС – температура насыщения греющего пара.
2.3.11 Вычислим средний температурный перепад в теплоиспользующих ступенях установки Dtср1å
|
2.3.12 Найдём количество теплоты, переданное воде, поступающей на испарение, в конденсаторах-пароохладителях теплоиспользующих ступеней Q1т
|
где iв1’=385,44 кДж/кг – энтальпия воды при её температуре на выходе из первой ступени (перед подачей в головной подогреватель) по таблице 2-1 [18];
iк’=192,53 кДж/кг – энтальпия воды на входе в шестую ступень (вода при температуре на выходе из седьмой ступени tк=46 оС) по таблице 2-1 [18].
2.3.13 Среднее количество теплоты, передаваемое воде, поступающей на испарение, в теплоиспользующих ступенях Q1ср
|
2.3.14 По таблице 4-6 [1] выбираем средний коэффициент теплоотдачи при конденсации пара на горизонтальных трубах с учётом неконденсируемых газов про вакуумметрическом давлении kк1= 3500 Вт/(м2´К).
2.3.15 По найденным величинам найдём среднюю площадь теплопередающей поверхности одного конденсатора-пароохладителя Fк ср
|
2.3.16 Зная количество теплоты передаваемое в конденсаторах-пароохладителях теплоотводящих ступеней и средние температурные напоры найдём площади теплопередающих поверхностей Fсрi
2.3.16.1 По таблице 4-6 [1] принимаем средний коэффициент теплоотдачи при конденсации пара в теплоотводящих ступенях kкср=2000 Вт/(м2´К).
2.3.16.2 Площадь теплопередающей поверхности конденсаторов седьмой ступени Fк7
|
2.3.16.3 Площадь теплопередающей поверхности конденсаторов восьмой ступени Fк8
|
2.3.16.4 Площадь теплопередающей поверхности конденсаторов девятой ступени Fср9
|
2.3.17 Площадь поверхности теплообмена головного подогревателя составляет Fг.п.
|
где kг.п.=3500 Вт/м2´К – ориентировочный коэффициент теплопередачи от конденсирующегося пара к жидкости по таблице (4-6) [1];